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Intermediate Subrings of Normalizing Extensions

Kang-Joo Min

ABSTRACT. Relationships between the prime ideals of a ring R and 
of a normalizing extension S have been studied by several authors. 
Relationships between the prime ideals of a ring R and of an interme­
diate normalizing extension T also have studied by several authors 
where R C T G S.

In this note, some relationships between prime ideals of T and S 
are studied.

Suppose that 2? is a subring of S, sharing the same identity ele­

ment, and that S is finitely generated as an R— module by elements 

ai,a2, • • - ,an with aiR = Rai. Then S is called a normalizing exten­

sion of R. The relationship between the prime ideals of these two 

rings has been studied by Heinicke, Robson, Lorenz, Passman, Lanski 

and others [1, 2, 3, 4, 5].

This suggests that a similar relationship could exist between the 

prime ideals of R and those of any ring T with 7? C T C S, such a 

ring T being termed an intermediate normalizing extension of R.

If a ring S is a normalizing extension of a ring R, there is a strong 

relationship between the sets SpecS and Spec?근 of prime ideals of 

these rings. Less clear is the relationship between SpecS and SpecT, 

where T is an intermediate normalizing extension of R.

That question arises as follows.
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If I is a prime ideal of S, I A T need not be a prime, nor even a 

semi-prime, ideal of T. If S is a normalizing extension of T (i.e. if 

T = 7?), then a sharper result is true ; I A T is in fact a semi-prime 

ideal.

The incomparability question is this : if I and If are distinct primes 

in S for which I QT and 1' Cl T have a minimal prime in common, 

does it follow Z g I' and I' 으 / ? [1].

The quection is still open in general. We will show the answer is 

yes in some case.

Other results herein include new information relating the primes 

of 7?, T, and S in some case. For a module Mr or bimodule rMr^ 

Z(M) denotes the lattice of submodules or subbimodules of M, and 

€(M) the collection of sub(bi)-modules which are essential in M, Mr 

is a prime module if M 尹 {0} and ann(M') = ann(M) for all nonzero 

Mf in £(M). If Mr is prime, then P = ann(M) is a prime ideal of 

』?, and we say that M is P—prime.

PROPOSITION 1. Let P be a prime ideal of R and Mr any module. 

The followings are equivalent :

(i) P = rt amiR(lt annM(P))-
(ii) P = rt annR(Mf) for some nonzero M* in L(Mr).

(iii) P = rt aniiR^X) for some nonempty subset X 羊 {0} of M 

[4

NOTATION : The set of primes of R which occur as annihilators 

of submodules of Mr will be denoted rtM — Spec/?, and those which 

occur as annihilators of prime submodules of M make up ass(M《)

PROPOSITION 2. Suppose a bimodule /^Mr is decomposed as M = 

®M, where each M is in L(aMr) and is Pi—prime as a right R-
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module. For any E in E (aMk),

ass(ER)= rtE _ SpecR

= {A,p2,...,n} [i].

DEFINITION 3. Suppose Q is an J?-ring (meaning there is a ring 

homomorphism R — Q sending 1 to 1) Then Q may be regarded as 

an 22-bimodule. We say that (Q, R) satisfies the idempotent condition 

if Q contains elements /i, 九, • • -，/n such that :

idem 1 : The fi are a family of orthogonal idempotents which sum 

to 1.

idem 2 : Each fi centralizes R, each Pi = amiR(fi) is a prime ideal 

of R, and 羊 Pj where i / J.

idem 3 : For each i, R(fiQ) and (Qfi)R are Pi-prime modules.

If S is a normalizing extension of R and I a prime ideal of *S, then 

S = S/I may be regarded as a prime normalizing extension of R = 

R/I Pl R. It was shown in [4] that (Q(S), R) satisfies 난* idempotent 

condition,where Q(S) is the Martindale right ring of quotients of the 

prime ring S.

Again suppose S is a normalizing extension of R, and let T be an 

intermediate subring and J a prime ideal of T. Then T/ J may be 

regarded as an over-ring of R/R D J.

It was shown in [4] that (Q(T/J), 正) satisfis the idempotent con­

dition, where Q(T/J) is again the Martindale right ring of quotients.

Suppose that T / S, Choose any ideal I of S maximal with respect 

to the property that IQT Q J. Such ideals exist, by Zorn’s Lemma, 

and are prime ideals of S.

Q{이!} has idempotents 舌,•• - , fn with annihilators in R being 

Pi, … Pm, say. Q(T/J) has idempotens /{,••• , whose annihilators 
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in R are, say !《,••• ,2Q. The are derived from the g [4]. In 

particular, k 으 m (after relabelling) Pi = P- for 1 丁 i 으 k.

The Criterion to tell which of the Pi coming form Q(S) also occur 

among the P； coming from Q(T/J) is that fiTfi DT J [4].

PROPOSITION 4. Suppose (Q, R) satisfies the idempotent condi­

tion, For any E e S(rQr),

ass(En) = rtE — SpecR

= {/%,••• ,Pn}

= ass(RE)

= ItE — SpecR

Proof. rQr = 리！ ®Qfi and (Qfi)R is 2%—prime therefore

ass(E/근) = rtE — SpecR = {Pi，… ,Pn}

by Proposition 2. The other assertions follow by symmetry.

PROPOSITION 5. Let T be an arbitrary intermediate normalizing 

extension of R, and J be a prime ideal of T. For any nonzero ideal A 

ofT/J,

ass(AR)= rtA — SpecR = = ItA — SpecR = a*((T/<7)호)

and this is a finite set.

PROOF. By the essentiallity Theorem [4], A is essential in Q = 

Q(T/J『). By Proposition 4, each of these sets conicide with ass(Q^).

The member of ass((T/J)^) are primes of R which are said to 

be connected to <7, and ass((T/J)K)is usually called connjR(J). By 

Proposition 5

conn 兄 (J) = rt(T/J) — SpecR
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i.e.,  that a prime P of 2? is connected to J if and only if it is the right 

annihilator in R of some subset or』?一submodule oi T/J.

The incomparability question for T and S is this : Is it possible to 

have primes I g I' of S and a prime J of T which is a minimal prime 

over IQT and I1 AT?

By passing to S/I and its subrings, we may assume S is prime, and 

ask if there is a nonzero prime ideal /' of S with If QT contained in 

some minimal prime J of T.

In fact it is enough to have If QT Q J with I1 just a nonzero ideal 

of 5\ for we could then enlarge it to an ideal V of S maximal with 

respect to having /' A T C J and If would be prime.

In light of these observations, we may assume that S is prime and 

J a minimal prime of an intermediate subring T. In this situation 

there are two distinguished subets of Spec/?, namely conn72(Os) and 

conn호(J) : these being the primes of R connected to the prime ideals 

0 (of S) and J (of T) respectively.

THEOREM 6. Let S be a primitive normalizing extension of R, T a,n 

intermediate subring, and J a minimal prime ofT, Then connR^J) = 

coniiR^Os) if and only if for a cyclic J—prime module At, Ar con­

tains a submodule which is isomorphic to the direct sum of repre­

sentatives of isomorphic classes of simple R-submodule of a simple 

faithful S—module M = S/K, where K is a maximal right ideal of S.

PROOF. Assume that conn；근(J) = conn/《(C)5). Let X be a max­

imal right ideal of S with (S/K)s is faithful. By [4], (S/K}r is 

semisimple 2?—module and (S/K)t has finite length. The annihilators 

of the J?-module composition factors comprise conn으(0s). Suppose 

the annihilators of the T-module composition factors are Ii, Z2, •。。, It。 

The product 7i ••• Zt = 0 since S/K is faithful. Since I\ • • • It = 0 C J 

and J is prime, Ii C J, Each I) is a primitive ideal of T and 
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so prime. Since J is minimal, I{ = J. Therefore there is a chain 

Ks 으 Ut C Vt 으 S and (Z7/V)r is a simple module with anihilator 

J. conn/근(J) is the set of all composition factors of (U/V)r. Since 

connK(J) = conn^(), ass(U/V)r = ass((S/K)으). Let (U/V)r = 

Ar. Ar contains a submodule which is isomophic to a simple R- 

submodule of(이for any simple j?-submodule of(乂S/K}r.

Conversely assume that the condition holds. Then ass(A^) = 

ass(S/근). This implies that conn오(J) = conn^(Os).

Now we are all the details of how to use the primitivity machine 

[5]. Given a ring S', such that is a certain power series-polynomial 

ring of the from S X X Y > ; that is, X and Y are suit- 

ally large sets of indeterminate, and elements of 5너" are of the from 

〉3/initeQ2 昌아우시1仏 where a1 s and /3fs are monomials in the elements 
of X and K, respectively and each 昌이? € S. Elements from one of 

the sets X, Y commute with those from the other, and with those of 

S, but not among themselves. For a subset A of S, consists of all 

power series-polynomials with coefficients from A.

PROPOSITION 7. Let S be a nomalizing extension of R and T an 

intermediate subring.

(i) 5너" is a normalizing extension of 2거", and 7너" an intermediate 

subring.

(ii) if A 시 R, then A十 < n J? = A and (2?/A)+ 은 7?+/A+.

(iii) If A^B are ideals of R, then C (AB)十 .

(iv) is a primitive ideal if A is prime.
(v) (nAi)十 = CL서" for any family of subset Ai of S.

(vi) If Z<lR+ and I = It ann^(B) for some subset B of 7?十 , then 

(I Pl 2?)十 으 I. Moreover, if I is prime in 2?十, then IQ R is 

prime in R.

(vii) All of (ii)-(vi) apply, with appropriate change to T and S.
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(viii) If I < S and IQ R = 0, then Z十 A 2거’ = 0 [5].

PROPOSITION 8. Assume S is prime. J is a minimal prime ofT if 

and only if is a minimal prime of 7너’

PROOF. Assume that J is a minimal prime of T. T has only a finite 

number of minimal primes : suppose they are • • •』》with J = J\. 

Also, the prime radical TV of T is nilpotent. From Proposition 7, each 

jf is prime and 7V너" = Of J서’ is nilpotent. So N'노 is the prime radical 

of 7거’. If <7 = J〒 were not minimal, jf 으 J너” for i / 1. J\ 으 J『i 

which is not possible. J너" is a minimal prime ideal of R+.

Conversely, assume that J十 is a minimal prime ideal of 7나. From 

Proposition 7, J너’ A 2? = <7 is prime. T has only a finite member 

of minimal primes : suppose they are J『i • • • J》, 거' H • • • D J처 = A거‘ 

is nilpotent. C J너’ for some i. Since J너’ is minimal, J서“ =《7十. 

Ji = jf D 7? = J사’ AT? = <7. J is a minimal prime ideal of T.

PROPRSITION 9. Assume S is prime and let J be a minimal prime 

of T. P E corm요(J) if and only if P = P Q R for some P G 

connR^{J^},

PROOF. Assume that P E conn；근(J). (T/J)r contains a P—prime 

submodule y/J which may be assumed cyclic, with y = y+J as gener­

ator. Consider the -submodule yR^ of Q = Q(T+/』너’). Qr de­

composes as a direct sum of prime right 2?+-module because (Q, 7?十 ) 

satisfies the idempotent condition. yR^ contains a prime submodule 

W : this too may be assumed cyclic, with generator yp(p € 2?+). Let 

it ann^+(Wr) = P E ass(7바/J나") = com%F(j+).

Now yP = 0, so P C rt ann』R(切9丘+) = RHP. To show the opposite 

inclusion, write p as a power series polynomial p = 으2(乞 with

ra,0 in R. Since yP 羊 0, 列애 羊 0 for some a,/3. But yp(P AJR) = 0, 

so yrQ^(P n2?) = 0 : But (Y/ J)r is P—prime, so 꼬 A 7? 으 P.
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Conversely assume that P € connm(J나"), (7나’/J너’)凡十 contains a 

P-prime submodule A/ J노 which may be assumed cyclic, with x = 

⑦ + J너" as generator. Let x = 乞(〉2 昌(四伏)0, B = 分 C = 

(B + J)/J. We will show that P = PQR = ann^C. xP = 0. (sa/3 十 

J)(P D 7?) = 0 for all a, (3. CP = 0.

Conversely assume that Cr = 0 for r E R. (x + J나")J거’r = 0. 

This implies that r E P 0 R = P- Hence annC = P. P E ass(J?/J), 

P G conn(J).

We have immediately following corollary.

COROLLARY 10. S is prime and let J be a minimal prime of T. 

P € connR^J) if and only if 2거“ € cohlq군(j+).

PROPOSITION 11. S is a prime normalizing extension of R and T 

is an intermediate subring rRr is essential in rTr. Then incompa- 

rability holds.

PROOF. Let N(T) be The prime radical of T. Since 7? is a semi­

prime ring and N(JV) = N(T) D R, N(T) = 0. Let Ji … J} be the 

minimal prime ideals of T, where Ji is not essential is rTr. Then 

Ji Cl • • • Pl J/ = 0. Let J be a minimal prime ideal of T. Ji • • • <7/ C J. 

J = Ji. Every minimal prime ideal of T is not essential in rTr. 

Therefore incomparalility holds [1].
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