Flows Associated with Semiflows

KYUNG BOK LEE

1. Introduction

It is known that if the map $\pi^t : X \to X$ is surjective for each $t \in \mathbb{R}^+$, then a triple $(X_{\infty}, \mathbb{R}, \pi_{\infty})$ is flow [2]. The purpose of this paper is to prove this fact without assumption, as follows:

THEOREM. Let (X, \mathbb{R}^+, π) be a semiflows. Then a triple $(X_{\infty}, \mathbb{R}, \pi_{\infty})$ induced by (X, \mathbb{R}^+, π) satisfy the conditions of flow.

We say that a triple (X, T, π) is a dynamical system, where X is a topological space, T is a topological group and $\pi : X \times Y \to X$ is a continuous function satisfying (a) $\pi(x, e) = x$ for $x \in X$ and (b) $(\pi(\pi(x, t), s) = \pi(x, ts)$ for any $s, t \in T$ and $x \in X$. For convenience we shall write $x\pi t$ or xt for $\pi(x, t)$. We call a flow if $T = \mathbb{R}$, the group of reals, and a semiflow if $T = \mathbb{R}^+$, the group of nonnegative reals, and a discrete if $T = \mathbb{Z}$, the group of integers.

2. Proof of the theorem

In this section we shall show our theorem. To prove the theorem, we need some definitions and lemmas. Let (X, \mathbb{R}^+, π) be a semiflow and let $\tilde{X} = \prod_{t \in \mathbb{R}^+} X_t$ be the product space over the index set $s \in \mathbb{R}^+$ directed by the usual order relation on the reals and $X_t = X$ for all $t \in \mathbb{R}^+$. Given $x = (x_t) \in \tilde{X}$ and $s \in \mathbb{R}^+$, define the map $\tilde{\pi} : \tilde{X} \times \mathbb{R}^+ \to \tilde{X}$ by $\tilde{\pi}((x_t), s) = (x_t \pi s)$. Then it is known that a triple $(\tilde{X}, \mathbb{R}^+, \tilde{\pi})$ is a semiflow which is usually called the direct product of

Received by the editors on June 16, 1994.

¹⁹⁸⁰ Mathematics subject classifications: Primary 58F15.

semiflow family $\{(X_t, \pi) : X_t = X, t \in \mathbb{R}^+\}$. Put $X_{\infty} = \{x = (x_t) \in \tilde{X} : x_t = x_s \pi(s-t) \ s, t \in \mathbb{R}^+$ with $s > t\}$. Let $\pi_{\infty} : X_{\infty} \times \mathbb{R} \to X_{\infty}$ be defined by: given $x = (x_t) \in X_{\infty}$ and $r \in \mathbb{R}^+$,

$$x\pi_{\infty}r = \begin{cases} (y_t), & y_t = x_0\pi(r-t), 0 \le t \le r, \\ (y_t), & y_t = x_{t-r}, t \ge r \end{cases}$$

and

$$x\pi_{\infty}(-r)=(y_t), \quad y_t=x_{t-r}.$$

Let us show that this definition is well-defined.

LEMMA 1. The map π_{∞} is well-defined.

PROOF. It is sufficient to show that $(x\pi_{\infty}r)\pi_s(s-t) = (x\pi_{\infty}r)_t$ for $s, t \in \mathbb{R}^+$ with s > t. To prove this claim, we have four cases.

(a) $0 \le r \le t$. From $(x\pi_{\infty}r)_s\pi(s-t) = x_{s-r}\pi(s-t) = x_{t-r}$ and $(x\pi_{\infty}r)_t = x_{t-r}$, we obtain $(x\pi_{\infty}r)_s\pi(s-t) = (x\pi_{\infty}r)_t$.

(b) $t \le r \le s$. From $(x\pi_{\infty}r)_s\pi(s-t) = x_{s-r}\pi(s-t) = (x_{s-r}\pi(s-t))\pi(r-t) = x_0\pi(r-t)$ and $(x\pi_{\infty}r)_t = x_0\pi(r-t)$, we obtain $(x\pi_{\infty}r)_s\pi(s-t) = (x\pi_{\infty}r)_t$.

(c) $s \leq r$. From $(x\pi_{\infty}r)_{s}\pi(s-t) = (x_{0}\pi(r-s)\pi(s-t) = x_{0}\pi(r-t))$ and $(x\pi_{\infty}r)_{t} = x_{0}\pi(r-t)$, we obtain $(x\pi_{\infty}r)_{s}\pi(s-t) = (x\pi_{\infty}r)_{t}$.

(d) $r \leq 0$. From $(x\pi_{\infty}r)_s\pi(s-t) = x_{s-r}\pi(s-t) = x_{t-r}$ and $(x\pi_{\infty}r)_t = x_{t-r}$, we obtain $(x\pi_{\infty}r)_s\pi(s-t) = (x\pi_{\infty}r)_t$. Hence we conclude that $(x\pi_{\infty})_s\pi(s-t) = (x\pi_{\infty}r)_t$.

DEFINITION 2. $P_l: X_{\infty} \to X_l, \quad l \in \mathbb{R}^+$, is called *canonical projection*.

In order to show that a triple $(X_{\infty}, \mathbb{R}, \pi_{\infty})$ is flow, we need the following property:

LEMMA 3. The family $\{P_t^{-1}(U) \cap X_{\infty} : t \in \mathbb{R}^+, U \subset X, \text{open}\}$ is a basis for the topology on X_{∞} .

PROOF. Since X_{∞} is a subspace of product space \tilde{X} , given an open neighborhood W_{∞} of a point $x = (x_i) \in X_{\infty}$, there exist open neighbord U_1, U_2, \ldots, U_n of $x_{t_1}, x_{t_2}, \ldots, x_{t_n}$, respectively, such that $x = (x_t) \in P_{t_1}^{-1}(U_1) \cap P_{t_2}^{-1}(U_2) \cap \cdots \cap P_{t_n}^{-1}(U_n) \cap X_{\infty} \subset W_{\infty}$ for $t_1, t_2, \ldots, t_n \in \mathbb{R}^+$. To prove this claim, it is sufficient to prove that $x = (x_t) \in P_s^{-1}(V) \cap X_{\infty} \subset W_{\infty}$ for $s \in \mathbb{R}^+$ and an open neighborhood V of x_s in X. Put $s = \max_{1 \leq i \leq n} \{t_i\}$. Then, we have $s \geq t_i$. By the continuity of semiflows, we find an open neighborhood V of x_s with $V\pi(s - t_i) \subset U_i$ for an open neighborhood U_i . From the fact that $y_{t_i} = y_s \pi(s - t_i) \in V \pi(s - t_i) \subset U_i$ for $y \in P_s^{-1}(V) \cap X_{\infty}$, we get $y \in P^{-1}t_i(u_i) \cap X_{\infty}$. Consequently, we have

$$x = (x_t) \in P_s^{-1}(V) \cap X_{\infty}$$

$$\subset P_{t_1}^{-1}(U_1) \cap P_{t_2}^{-1}(U_2) \cap \dots \cap P_{t_n}^{-n}(U_n) \cap X_{\infty} \subset \dot{W}_{\infty},$$

ending the proof.

If we replaces index set \mathbb{R}^+ by index set \mathbb{Z}^+ , the statements of Lemma 3 remain true.

COROLLARY 4. The family $\{P_n^{-1}(U) \cap X_\infty : n \in \mathbb{Z}^+, U \subset X, open\}$ is a basis for the topology on X_∞ .

PROOF. For an open set W_{∞} in X_{∞} , let $x \in W_{\infty} \subset X_{\infty}$. By Lemma 3, there exist a $t_1 \in \mathbb{R}^+$ and an open subset U_1 in X such that $x \in P_{t_1}^{-1}(U_1) \cap X_{\infty} \subset W_{\infty}$. In particular, we choose $n \in \mathbb{Z}^+$ with $n > t_1$. The fact that $V\pi(n-t_1) \subset U_1$ for an open neighborhood V of x_n comes from the fact $x_s\pi(n-t_1) = x_{t_1} \in U_1$ and the continuity of semiflow. If $y_n \in V$, it follows that $y_{t_1} = y_n\pi(n-t_1) \in V\pi(n-t_1) \in$ U_1 . So, we obtain

 $x\in P_n^{-1}(V)\cap X_\infty\subset P_{t_1}^{-1}(U_1)\cap X_\infty\subset W_\infty,$

as desired.

PROOF. To prove our Theorem, it is sufficient to prove the fact that the map $\pi_{\infty}: X_{\infty} \times \mathbb{R} \to X_{\infty}$ satisfy the conditions of flow.

First condition. From $(x\pi_{\infty}0)_t = x_t$, we obtain $x\pi_{\infty}0 = x$.

Second condition. we prove that $(x\pi_{\infty}r)\pi_{\infty}s = x\pi_{\infty}(r+s)$ for any $r, s \in \mathbb{R}$.

Case (1) $r \ge 0, s \ge 0$.

(a) $0 \le t \le s$. The fact that $((x\pi_{\infty}r)\pi_{\infty}s)_t = (x\pi_{\infty}(r+s))_t$ comes from the fact $((x\pi_{\infty}r)\pi_{\infty}s)_t = (x\pi_{\infty}r)_0\pi(s-t) = (x_0\pi r)\pi(s-t) =$ $x_0\pi(s-t)$ and $(x\pi_{\infty}(r+s))_t = x_0\pi(r+s-t)$. Hence, we obtain $(x\pi_{\infty}r)\pi_{\infty}s = x\pi_{\infty}(r+s)$.

(b) $s \leq t \leq r+s$. The fact that $((x\pi_{\infty}r)\pi_{\infty}s)_t = (x\pi_{\infty}(r+s))_t$ comes from the fact $((x\pi_{\infty}r)\pi_{\infty}s)_t = (x\pi_{\infty}r)_{t-s} = x_0\pi(r-t+s)$ and $(x\pi_{\infty}(r+s))_t = x_0\pi(r+s-t)$. Hence, we obtain $(x\pi_{\infty}r)\pi_{\infty}s = x\pi_{\infty}(r+s)$.

(c) $r + s \leq t$. The fact that $((x\pi_{\infty}r)\pi_{\infty}s)_t = (x\pi_{\infty}(r+s))_t$ comes from the fact that $((x\pi_{\infty}r)\pi_{\infty}s)_t = (x\pi_{\infty}r)_{t-s} = x_{t-s}$ and $(\pi_{\infty}(r+s))_t = x_{t-s-r}$. Hence, we obtain $(x\pi_{\infty}r)\pi_{\infty}s = x\pi_{\infty}(r+s)$.

The proofs of the other cases (2) $r \ge 0, -r \ge s \ge 0$, (3) $r \ge 0, s \le -r$, (4) $r \le 0, s \le 0$, (5) $r \le 0, s \ge -r$, and (6) $r \le 0, 0 \le s \le -r$, respectively, are similar to the proof of (1).

Third condition. We shall show that $\pi_{\infty} : X_{\infty} \times \mathbb{R} \to X_{\infty}$ is continuous. Let us write $x\pi_{\infty}r = y \in X_{\infty}$ for the corresponding map $\pi_{\infty} : X_{\infty} \times \mathbb{R} \to X_{\infty}$. By Lemma3, the basis neighborhoods of y always have the form $P_s^{-1}(U) \cap X_{\infty}$ for $s \in \mathbb{R}^+$. We claim that $y_s = x_n \pi (n + r - s)$ for n = s + |x| + 1. To prove this claim, we have to show the following three cases.

 $\mathbf{72}$

(i) $0 \le s \le r$. $y_s = x_0 \pi (r-s) = (x_n \pi_n) \pi (r-s) = x_n \pi (n-s+r)$.

(ii) $0 \le r \le s$. From the fact that $y_s = x_{s-r}$ and n = s + r + 1 > s - r, we obtain $y_s = x_{s-r} = x_n \pi (n - s + r)$.

(iii) r < 0. From the fact that $y_s = x_{s-r}$ and n = s - r + 1 > s - r, we obtain $y_s = x_{s-r} = X_n \pi (n - s + r)$.

By (i), (ii), (iii), we have always the form $y_s = x_n \pi (n - s + r)$. Now, there exists an open neighborhood V of x_n and $0 < \varepsilon < 1$, respectively, such that $V\pi(n + r - s - \varepsilon, n + r - s + \varepsilon) \subset U$ by the continuity of semiflows. From $x_n \in V$, we assert that $(P_n^{-1}(V) \cap X_{\infty})\pi_{\infty}(r - \varepsilon, r + \varepsilon) \subset P_s^{-1}(U) \cap X_{\infty}$ for $x \in P_n^{-1}(V) \cap X_{\infty}$. To prove this fact, we shall that $(z\pi_{\infty}t)_s = z_n\pi(n + t - s)$ for any $z \in$ $P_n^{-1}(V) \cap X_{\infty}$ and $t \in (r - \varepsilon, r + \varepsilon)$. To check this claim, we have three cases.

(α) $0 \ge s \ge t.(z\pi_{\infty}t)_s = z_0\pi(t-s) = (z_n\pi_n)\pi(t-s) = z_n\pi(n+t-s).$

(β) $0 \ge t \ge s$. By $(z\pi_{\infty}t)_s = z_{s-t}$ and $n \le s-t$, we have $(z\pi_{\infty}t)_s = z_n\pi(n+t-s)$.

(γ) $0 \leq s$. By $(z\pi_{\infty}t)_s = z_{s-t}$ and n > s-t, we have $(z\pi_{\infty}t)_s = z_n\pi(n+t-s)$

Therefore, we obtain that $(z\pi_{\infty}t)_s = z_n\pi(n+t-s) \in V\pi(n+r-s-\varepsilon, n+r-s+\varepsilon)$. Consequently, from the fact that $z\pi_{\infty}t \subset P_s^{-1}(U) \cap X_{\infty}$, the map $\pi_{\infty} : X_{\infty} \times \mathbb{R} \to X_{\infty}$ is continuous. This completes the proof.

The author wishes to thank Professor Chin-Ku Chu and Professor Jong Suh Park for their helps.

References

1. Bhatia, P. N. and Hajék, O., Local semidynamical systems, Lecture Notes in mathematics Springer-verlag, Berlin 90 (1968).

- 2. S. Elaydi, Semidynamical systems with nonuiqueness global backward extensions, Funckial. Ekvac 26 (1983), 173-187.
- S. K. Kaul, A semidynamical systems associated with a general control system, Nonlinear Analysis, Theory, Methods and Applications 13 (1989), 1-5.
- 4. Kyung Bok Lee, Stability of closed sets in semiflows; The negative aspects,
 J. of chungcheong Mathematical society 5 (1992), 49-56.

DEPARTMENT OF MATHEMATICS Hoseo University Asan, Chungnam 337-850,Korea