A Characterization of The Strong Measurability via Oscillation

SANG HAN LEE, JIN YEE KIM AND MI HYE KIM

ABSTRACT. Let (Ω, Σ, μ) be a measure space. A function $f: \Omega \to X$ is said to be *equioscillated* if for each set $A \in \Sigma$ of positive measure and for each $\epsilon > 0$, there is a measurable subset B of A of positive measure such that the inequality

 $\sup_{\omega \in B} x^* f(\omega) - \inf_{\omega \in B} x^* f(\omega) < \epsilon$

holds for every x^* with $||x^*|| \le 1$. Strong measurability of a vector valued function is characterized using equioscillation.

Let (Ω, Σ, μ) be a finite measure space, and let X be a Banach space with continuous dual X^* .

A function $f: \Omega \to X$ is said to be *strongly measurable* if there exists a sequence (f_n) of simple functions from Ω into X such that

$$\lim_{n} \|f_n - f\| = 0$$

 μ -almost everywhere.

A strongly measurable function $f: \Omega \to X$ is called *Bochner integrable* if there exists a sequence (f_n) of simple functions from Ω into X such that

$$\lim_n \int_{\Omega} \|f - f_n\| d\mu = 0.$$

A function $f: \Omega \to X$ is *Pettis integrable* if

(1) for every $x^* \in X^*$, the scalar function x^*f is μ -measurable and μ -integrable, and

Received by the editors on June 11, 1994.

1980 Mathematics subject classifications: Primary 28B20.

SANG HAN LEE, JIN YEE KIM AND MI HYE KIM

(2) for every $A \in \Sigma$, there exists an $x_A \in X$ such that

$$x^*(x_A) = \int_A x^* f d\mu$$

for every $x^* \in X^*$.

In [3], L. H. Riddle and E. Saab introduced the Bourgain property to investigate the Pettis integrability of a function $f: \Omega \to X^*$.

In this paper, we strengthen the Bourgain property to, what we call, the equioscillatedness. Surprisingly, we find that the strong measurability of a function $f: \Omega \to X$ is equivalent to saying that f is equioscillated. This is a characterization of strong measurability of vector valued functions analogous to Pettis's measurability theorem.

All notations and notions used and not defined in this paper can be found in [1], [2], and [3].

DEFINITION 1. Let (Ω, Σ, μ) be a measure space. A family Ψ of real-valued functions on Ω is said to have the *Bourgain property* if the following condition is satisfied : For each set $A \in \Sigma$ of positive measure and for each $\epsilon > 0$, there is a finite collection \mathcal{F} of measurable subsets of A of positive measure such that for each $f \in \Psi$, the inequality

$$\sup_{\omega \in B} f(\omega) - \inf_{\omega \in B} f(\omega) < \epsilon$$

holds for some member B of \mathcal{F} . A function $f: \Omega \to X$ is said to have the Bourgain property if the set $\{x^*f: ||x^*|| \leq 1\}$ has the Bourgain property.

PROPOSITION 2 [3, Theorem 13]. A bounded function $f: \Omega \to X^*$ which has the Bourgain property is Pettis integrable.

The converse is not always true. In fact, there is a universally Pettis integrable function without the Bourgain property [3, Example 14].

60

DEFINITION 3. Let (Ω, Σ, μ) be a measure space. A family Ψ of real-valued functions on Ω is said to be *equioscillated* if the following condition is satisfied : For each set $A \in \Sigma$ of positive measure and for each $\epsilon > 0$, there is a measurable subset B of A of positive measure such that the inequality

$$\sup_{\omega \in B} f(\omega) - \inf_{\omega \in B} f(\omega) < \epsilon$$

holds for every function f in Ψ . A function $f: \Omega \to X$ is said to be *equioscillated* if the set $\{x^*f: ||x^*|| \leq 1\}$ is equioscillated.

The difference between the equioscillatedness and the Bourgain property lies in the number of elements of \mathcal{F} . For the equioscillatedness, we required \mathcal{F} to be a singleton $\{B\}$.

PROPOSITION 4. If a family Ψ of real-valued functions on Ω is equioscillated, then the pointwise closure of Ψ is also equioscillated.

PROOF. Let $\epsilon > 0$ be given, and let A in Σ be fixed with $\mu(A) > 0$. Since Ψ is equioscillated, there exists a subset B of A with $\mu(B) > 0$ such that

(1)
$$\sup_{\omega \in B} f(\omega) - \inf_{\omega \in B} f(\omega) < \frac{\epsilon}{2}$$

for all f in Ψ . For each g in $\overline{\Psi}$, there exists a net (f_{α}) in Ψ such that g is a pointwise limit of (f_{α}) . We can choose f_{α_0} in $\{f_{\alpha}\}$ and ω_1, ω_2 in B such that

(2)
$$|\sup_{\omega \in B} g(\omega) - f_{\alpha_0}(\omega_1)| < \frac{\epsilon}{4}$$
 and $|\inf_{\omega \in B} g(\omega) - f_{\alpha_0}(\omega_2)| < \frac{\epsilon}{4}$.
By (1),(2)

$$\sup_{\omega \in B} g(\omega) - \inf_{\omega \in B} g(\omega) < \epsilon.$$

This completes the proof.

The following is stated in p.42 of [2, Corollary 3] without an indication of an argument. To make this paper self-contained and clear, we give an argument.

LEMMA 5. A function $f: \Omega \to X$ is strongly measurable if and only if f is the μ -almost everywhere uniform limit of a sequence of countably valued strongly measurable functions.

PROOF. We need to prove only sufficiency. Let $g_n = \sum_{k=1}^{\infty} x_{n,k} \mathcal{X}_{E_{n,k}}$ with $x_{n,k} \in X$, $E_{n,i} \cap E_{n,j} = \phi$ for $i \neq j, E_{n,k} \in \Sigma$ and $\bigcup_k E_{n,k} = \Omega$. Suppose that f is the μ -almost everywhere uniform limit of (g_n) . We may assume that

(3)
$$\|g_n(\omega) - f(\omega)\| < \frac{1}{n}$$

for all $w \in \Omega$ without loss of generality. Since $\mu(\Omega)$ is finite, for each n, there exists an integer l_n such that $\mu(\bigcup_{k=l_n+1}^{\infty} E_{n,k}) < \frac{1}{n}$. Put $E_n = \bigcup_{k=l_n+1}^{\infty} E_{n,k}$. This gives rise to a simple function

$$f_n = \sum_{k=1}^{l_n} x_{n,k} \mathcal{X}_{E_{n,k}}.$$

Note that

(4)
$$f_n = g_n \quad \text{on} \quad \Omega - E_n.$$

Now we take a subsequence of (f_n) as follows: Pick a subsequence $\{E_{n_k}\}$ of $\{E_n\}$ so that

$$\mu(E_{n_k}) < \frac{1}{2^k},$$

62

and let

$$\widetilde{E_k} = \bigcup_{p=k}^{\infty} E_{n_p}$$

Then clearly, $\{\widetilde{E_k}\}$ is decreasing and

$$\mu(\widetilde{E_k}) \le \frac{1}{2^k} + \frac{1}{2^{k+1}} + \dots = \frac{1}{2^{k-1}},$$

Let $A = \bigcap_{k=1}^{\infty} \widetilde{E_k}$. Then $\mu(A) = 0$. For every $\omega \notin A$, there exists an integer *n* such that $\omega \notin \widetilde{E_n}$, which implies $\omega \notin \widetilde{E_k}$ for all k > nsince the sequence $\{\widetilde{E_k}\}$ is decreasing. Moreover, for such ω and *n*,

$$\begin{aligned} \|f_{n_k}(\omega) - f(\omega)\| &\leq \|f_{n_k}(\omega) - g_{n_k}(\omega)\| + \|g_{n_k}(\omega) - f(\omega)\| \\ &= \|g_{n_k}(\omega) - f(\omega)\| \\ &< \frac{1}{n_k} \end{aligned}$$

using (3) and (4). This shows that the sequence of simple functions (f_{n_k}) converges to f on $\Omega - A$. This completes the proof of the lemma.

THEOREM 6. A function $f: \Omega \to X$ is strongly measurable if and only if f is equioscillated.

PROOF. Suppose $f: \Omega \to X$ is strongly measurable and let (f_n) be a sequence of simple functions for which

$$\lim_{n} \|f - f_n\| = 0 \quad a.e.$$

Let A be a measurable subset of Ω with $\mu(A) > 0$, and let $\epsilon > 0$ be given. By Egoroff's theorem, there exists a set B with $\mu(\Omega - B) < \mu(A)$ such that the sequence (f_n) converges uniformly to f on B. Choose an integer n so that

$$\|f(\omega) - f_n(\omega)\| < \frac{\epsilon}{4}$$

SANG HAN LEE, JIN YEE KIM AND MI HYE KIM

for all ω in B. Let $f_n = \sum_{i=1}^m x_i \mathcal{X}_{E_i}, x_i \in X$, and let $\bigcup_{j=1}^m E_j = \Omega$. Then there exists a set C in $\{E_1, E_2, \cdots, E_m\}$ such that

 $\mu(A \cap B \cap C) > 0$

since $\mu(A \cap B) > 0$, and $\mu(A \cap B) = \mu(A \cap B \cap (\bigcup_{j=1}^{m} E_j)) = \sum_{j=1}^{m} \mu(A \cap B \cap E_j).$

Let x^* be an element of $\{x^* \in X^* : ||x^*|| < 1\}$. Then for all ω_1, ω_2 in $A \cap B \cap C$,

$$\begin{aligned} |x^*f(\omega_1) - x^*f(\omega_2)| &\leq |x^*f(\omega_1) - x^*f_n(\omega_1)| + |x^*f_n(\omega_1) - x^*f_n(\omega_2)| \\ &+ |x^*f_n(\omega_2) - x^*f(\omega_2)| \\ &\leq \|f(\omega_1) - f_n(\omega_1)\| + 0 + \|f_n(\omega_2) - f(\omega_2)\| \\ &< \frac{\epsilon}{2}. \end{aligned}$$

Now we can choose ω_1, ω_2 in $A \cap B \cap C$ so that

$$|\sup_{\omega \in A \cap B \cap C} x^* f(\omega) - x^* f(\omega_1)| < \frac{\epsilon}{4}$$

and

$$\inf_{\omega \in A \cap B \cap C} x^* f(\omega) - x^* f(\omega_2) | < \frac{\epsilon}{4}.$$

Then

$$\sup_{\omega \in A \cap B \cap C} x^* f(\omega) - \inf_{\omega \in A \cap B \cap C} x^* f(\omega) \le x^* f(\omega_1) + \frac{\epsilon}{4} - (x^* f(\omega_2) - \frac{\epsilon}{4}) < \epsilon$$

This shows that f is equioscillated.

Conversely, suppose f is equioscillated. Since (Ω, Σ, μ) is a finite measure space, for each n, there exists a sequence $(B_{n,k})$ of pairwise disjoint measurable sets with positive measure such that

$$\sup_{\omega \in B_{n,k}} x^* f(\omega) - \inf_{\omega \in B_{n,k}} x^* f(\omega) < \frac{1}{n}, \quad n = 1, 2, 3, \cdots$$

64

for each x^* in $\{x^* \in X^* : ||x^*|| \le 1\}$, and $\mu(\Omega - \bigcup_k B_{n,k}) = 0$. Note that $\mu(\Omega - \bigcap_n \bigcup_k B_{n,k}) = 0$. Define

$$f_n = \sum_{k=1}^{\infty} f(\omega_{n,k}) \mathcal{X}_{B_{n,k}}$$

where each $\omega_{n,k}$ is fixed in $B_{n,k}$.

If ω is an element of $\cap_n \cup_k B_{n,k}$ then there exists a sequence (B_{n,k_n}) such that ω is in B_{n,k_n} for each n. And

$$\begin{aligned} \|f_n(\omega) - f(\omega)\| &= \sup_{\substack{\|x^*\| \le 1}} |x^* f_n(\omega) - x^* f(\omega)| \\ &= \sup_{\substack{\|x^*\| \le 1}} |x^* f(\omega_{n,k_n}) - x^* f(\omega)| \\ &\leq \sup_{\substack{\|x^*\| \le 1}} |\sup_{\omega \in B_{n,k_n}} x^* f(\omega) - \inf_{\omega \in B_{n,k_n}} x^* f(\omega)| \\ &< \frac{1}{n} \end{aligned}$$

for all ω in $\cap_n \cup_k B_{n,k}$.

This shows that (f_n) converges uniformly to f almost everywhere, hence f is strongly measurable by Lemma 5. This completes the proof.

COROLLARY 7. A bounded function $f : \Omega \to X$ is Bochner integrable if and only if f is equioscillated.

COROLLARY 8. A function $f: \Omega \to X^*$ is strongly measurable if and only if $\{xf: ||x|| \leq 1\}$ is equioscillated.

PROOF. For each x^{**} in X^{**} with $||x^{**}|| \leq 1$, there exists a net (x_{α}) in $\{x \in X : ||x|| \leq 1\}$ which converges weak* to x^{**} by Goldstine's theorem. Hence $x^{**}f$ belongs to the pointwise closure of $\{xf : ||x|| \leq 1\}$ since $((f(\omega))(x_{\alpha}))$ converges to $x^{**}(f(\omega))$ for each ω in Ω .

By Proposition 4, $\{x^{**}f : ||x^{**}|| \le 1\}$ is equioscillated if and only if $\{xf : ||x|| \le 1\}$ is equioscillated. Hence f is strongly measurable by Theorem 6.

There exists a function $f: \Omega \to X$ such that $x^*f = 0$ almost everywhere for each x^* in X^* , but f is not equioscillated (i.e. f is not strongly measurable).

EXAMPLE 9. Let $(\Omega, \Sigma, \mu) \equiv ([0, 1],$ Lebesgue measurable sets, Lebesgue measure) and let $l_2[0, 1]$ be the set of all functions x: $[0, 1] \to R$ for which $||x|| = [\sum_{r \in [0, 1]} |x(r)|^2]^{\frac{1}{2}} < \infty$. Then $l_2[0, 1]$ is a Banach space whose dual is $(l_2[0, 1])^* = l_2[0, 1]$. The action of Ψ in $(l_2[0, 1])^*$ on x in $l_2[0, 1]$ is given by

$$\Psi(x) = \sum_{r \in [0,1]} \Psi(r) x(r).$$

Define a function $f: \Omega \to l_2[0,1]$ by $r \to e_r$, where

$$e_r(t) = \left\{egin{array}{ccc} 1 & ext{if} & r=t \ 0 & ext{otherwise.} \end{array}
ight.$$

For each x^* in $(l_2[0,1])^*$, $x^*f: \Omega \to R$ has at most countably many non-vanishing points, since $x^*f(r) = x^*(r)$ for all r in Ω , and since x^* is an element of $l_2[0,1] = (l_2[0,1])^*$. Hence $x^*f = 0$ almost everywhere.

But f is not equioscillated. Indeed, for B in Σ with $\mu(B) > 0$, fix r in B and put $x^* = e_r$ then

$$x^*f(r) = e_r(f(r)) = e_r(e_r) = \sum_{t \in [0,1]} e_r(t)e_r(t) = 1.$$

And if $t(\neq r)$ is an element of B, then

$$x^*f(t) = e_r(f(t)) = e_r(e_t) = \sum_{s \in [0.1]} e_r(s)e_t(s) = 0.$$

Hence

$$\sup_{\omega \in B} x^* f(\omega) - \inf_{\omega \in B} x^* f(\omega) = 1.$$

References

- 1. J. Diestel, Sequences and Series in Banach spaces, vol. 92, Graduate Texts in Mathematics, Springer-Verlag, 1984.
- 2. J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys, no.15, A.M.S., 1977.
- 3. L. H. Riddle and E. Saab, On functions that are universally Pettis integrable, Illinois J. of Math 29 (1985), 509-531.
- 4. E. Saab, On the weak*-Radon Nikodym property, Bull. Austral. Math. Soc. 37 (1988), 323-332.
- 5. J. M. Park, The Bourgain Property, J. Chungcheong Math. Soc. 4 (1991), 71-74.

DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY CHEONGJU, 360-763, KOREA