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On a Transversality over Local Global Rings

Kee-Young Shin

ABSTRACT. The purpose of this paper prove the following property;
Suppose A has many units (local global ring) and \A/m\ > 5 for every 
maximal ideal m C A. Let(E, q) 6 Q(A) and E =剧丄…丄Et be 
an orthogonl decomposition of E with t > 2 and 시c(Ef) > 1, for 
i = 1, ••- , t. Let x G E be a primitive vector. Then there exists 
a € O(q) such that cr(a?) is transversal to this decomposition.

1. Introduction
We show all of these abstract theories can be applied to some 

quadratic forms over a ring with many units with 2 6 A*, where 
A* : the multiplicative group of the ring A. That is, if every polyno­
mial over A with local unit values has unit values, we call A a ring 
with many units or a local global ring . This work was studied by Dc- 
Donald and kirkwood in [7], and many properties of the new ring have 
been shown to parallel in many respects that of semi local ring.[1].[8].

We need some words and notations. Denote by 筈(4) the class of 
all finitely generate free A-modules, a quadratic space over A is a pair 
(E, g), where E E 笆(4), and Q(4) 난le 시ass of all guadratic spaces. 
Let (E)q) E Q(A),x E E)we say x is isotropic if q(x,x) = 0 and 
x is primitive if there exists f e E where E = HomA(£*, A) such 
that f(x) = 1 forthermore an element x E E is said to be anisotropic 
if x) E A*. Note that any element in an orthogonal basis is 
necessarily anisotropic, clearly any istropic vetor in E is primitive.
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It is well known that e E E is anistropic, then E = Ae ® (Ae)2, 
where (Ae)2 = {z € E\q{x^ e) = 0). Let E = E±A. • • •丄」队 / > 2, be 
an orthogonal decomposition of (E)q), we say x is transversal to this 
decomposiition if x = -----卜血，叫 C Ei is isotropic for i = 1, ••-
If ei, • • • , en is an orthogonal basis for E and x is transversal to the 
decomposition Aei± - - - ±Aen, then we say x is transversal to the 
basis ei, , , , , en.

The purpose of this paper is to prove the proposition 6, explicitly.

2. Some preliminary lemmas and result
Let 7Z : E t E by the A-isomorphism given by %(z) = —z, 

7z(y) = y ,for all y e (Az)丄.So for any x e E, = x -畿导z 
* is called the reflection determined by z and is an isometry of [E^q].

Next Lemmas are trivial.

LEMMA L i) Let F be a field and (E)q) G Q(F). Let x^y E E 
be anisotropic vectors such that q(x),x) = g(饥 g) . Then there exists 
a reflection yz : E E such that 似⑦)=

ii) Let x E E be anisotropic and w E (死)丄 such that g(w, w) 十 
Let b E F^b 0. Then there exists a, c G F, c ^4 0 such that 

q(ax + cw^ax + cw) = b2 q(x^x)[10].

LEMMA 2. Suppose (E’q) G QQ4) with dimension n > 3. Let 
x^e E E be anisotropic. Then exists a reflection，& ： E —)E such 
that 7^(ar) = ae + u^a E A and u G (/£)丄 is anisotropic[10].

LEMMA 3. Suppose A is a Geld with |A| > 5. Then for each a £ 
there exists &, c G A* such that a = * — 서、

PROOF. It is simple. Since \A\ > 5, |A*21 > 3 and hence, there 
exist d € A* such that J2 ±1. Since(P = (으벟느)? 一 (与그)% thus 
1 = 62 — c2 for some &,c G A* and —l = c2 —队 Suppose a G A*, 
a 尹 ±1. Then a = ( 으尹尹 一 ( 으尹)? so a = &2 — c2 also &, c € A* [8].
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LEMMA 4. Suppose A is a field with \A\ > 5. Let (E河)G Q(A) 
with rk(E) > 2and x^e E E be anisotropic vectors. Then there exists 
a reflection * : E t E such that %S) = ae + where a G A*and 
u 6 (4e)」- is anisotropic.

PROOF. Put rfc(E') = 2 and e = ei, 62 be an orthogonal basis of E 
and let 缶 = q(e、어) for i = 1,2. Suppose there exists yi, 切 € A* such 
that q(x)。) = xlai+xla2 = yl^+yla2 = 戒豹勿+切处, 고+切仑2)・ 
Then , by Lemma 1, there exist a reflection * : E —E such that 
丁z(z) = ±(t/iei + 切如),so taking a = ±yi^u = ±切号2 ,we are done.

Thus it is sufficient to show that there exists gi,切 £ A* such that 
赂Qi +球= yl^i +谚冬2・ If 寸二 0, for z = 1,2 take yi =立,切=@2 
and we are done .Otherwise one of the x^s is zero, we may assume 
X2 = 0, then we show 如於 G A*such that 辑⑶=诸血 + 谚％, that 
is, (詰)2 — (^)2 = 끄，By above Lemma, there exist b)c € A* such 
that 끄 = 彤 一 c2, so define 皿 切 by 끄 = 们 끊 = c.

Now assume rk(E) > 3. By Lemma 2, there exists a reflection 
1 : E t E such that 7(3;) = be + u, b E A and v G (4e)丄 is 
anisotropic. Let F = 4e ㊉ = 7(2:) E F. Since y is anisotropic,
and rk(F) = 2, there exists a reflection r : F F such that T(y)= 
ce + w, c G A* and w E Av is anisotropic. Extend r to a reflection 
of E so r o 7(z) = ce ± w. By Lemma 1, there exists a reflection

: E t E such that 为3) = ±(ce + w) so take a == ±c G X* and 
u = iw € Av C Q4e)丄[12].

LEMMA 5. Suppose A is a Held and (E, g) G Q(4) with rk(E) > 
2. Let x E E be a primitive isotropic vector and e E E be any 
anisotropic vector. Then there exists a reflection yz(x) : E t E such 
that yz(x) = ae + u^a E A*,u E (4e)丄 is anisotropic.

PROOF. Put X = be+ t^b e A^t e (Ae)-1-,
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If b N 0 then 0 = q(奶 x) = Wq(e)e) + q(t)t) so g(" /)尹 0, thus, we 
can take z = ja = —6, and u = t and we are done. So assume 6 = 0, 
that is 終 £ (4时丄，there exist y G Q4e)丄 such that e + y is isotropic 
and e + x + y is anisotropic.Then, if z = e + z + y^z{x} = —(e + g) 
so taking a = —1 and u =—饥 we are done. Indeed z' = z — (e + g) € 
(4z)丄.So z = 3(z +，/), e + g = §(z —*) and %3) = —(e + g). Since 
Q(e, e)尹 0, and 0 = g(e + 饥 e + g) = g(e, e) + q(y + y), q(g,g)尹 0 so 
y is anisotropic.

We now show that such a y exist. That is, we want to find y G 
(4e)丄 such that 0 = q(e + 饥 e + g) = g(e, e) + g(g, y) and q(e + x + 
y,e + x + y) = q(e)e) + 戒⑦,x) + Q(饥 g) + 2q(z, g) = 2g(x, g) + 0. 
Since x € (4e)丄 is primitive and q\(Ae)-L is non-degenerate, there 
exist u € (4e)丄 such that x) = 1 .We try for y € Q4e)丄 of the 
form y = ex + u^c E A. Then, g) = cq(x, x) + q(x^ u) = 1 0
and q(e, e)+q(y, y) = q(e)e)+c2q(x, x)+2cq(u, z)+g(a, u) = q (e, e)+ 
q(uJu) + 2c. Since we want this to be 0, take c = — §(g(e, e) + q(?"))・ 
We are well done [9], [12].

Next prosition is well known in case where every residue field of A 
is infinite [7] and similar result holds for semi local ring [1].

The purpose of this paper is to prove the transversality theorem 
over a local global ring explicity[ll].

PROPOSITION 6. Suppose A has many units (local global ring) and 
\A/m\ > 5 for every maximal ideal m 으 4 Let (E,g) G Q(A) and 
E = Ei 丄 … ±Et be an orthogonal decomposition of E with t > 2 
and rk(Ei) > 1, for / = ].,•・・,t. Let x E E be a primitive vector.

Then there exists a € O(q) such that is transveral to this 
decomposition.

PROOF. Clearly it is sufficient to consider the case t = 2. Let 
E = Ei + E? be an orthogonal decomposition of E. We go on by 
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induction on k = yk(Ei).
Suppose k = 1, Ei = Aei, for some anisotropic 处 E E. Complete 

ei to an orthogonal basis 处,••- ,en and, let = 戒以‘어) for i = 
1, • •・,n. We can write % = £ xiei and suppose z = £ 召％ € E is 
anisotropic. Then

] n7z(z) = —7 C〉: *(21, , , , ,
"，기 心

where u^zi ・ °。？ zn) = q(z)z)e@ — 2g(z, for / = ]“・・・,n. Let

] na = / 匚一< € 4, u = ------r 5、uRi G (4四)丄=E/.
qg) g(v,)

n
So we want a E A* and q(u)u) = 日[我可二诵사4 € A*. That is, we 

'i=2
want the polynomial

n
f(zi，• - , 2危)=q(知 z) *(2L …,Zn) 缶(21，…,2危)电』

i=2

to have local units values. Let m C A be a maximal ideal . Then 
x € E/mE is primitive , and e G E/mE isanisotropic. If x is isotropic, 
then ,by Lemma 5, there exists 切,・• • , 2危 € 4 with f(於, zn)牛 m. 
If x is anisotropic,then, since \A/m\ > 5, there exists 分,• • • , zn G A 
with • • • , m by Lemma 4. Hence,/ has local unit values 
and therefore, there exists z = &档 G E such that * is the required 
isometry.

Now suppose k >2. Let e E Ei be anisotropic and E\ = Ael.F 
be an orthogonal decomposition of E” By the above, there exists 
a reflection q : E -스 E such that g(z) = ae + w,where a G A* and 
u E F ® E2 is anisotropic. Since rk(F) = A; — 1, by induction, there 
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exists an isometry 丁 ： F 品 E2 t F & E? such that r(u) = tzi + tz2, 
where iz】 £ F 으 Ei and 总 G E? are both anisotrpic. Extend r to an 
isometry of E so that r(e) = e. Let Vi = ae + E E)and V2 = «2 € 
j%2・ Then to roy(x) = r(ae + u) = ae + ui +U2 =勿 + 〃2 € Av2 
Since r o is primtive and rk(Av2)= 1, there exists a reflection 
/ : Av2 e El —> Av2 ® Ei such that yf(vi + 如)=bv2 + w, where 
& £ A* and w E Ei is anisotropic. Extend 丁' to a reflection of E・ 
Then 7' o 7 0 t(w) = w + v,where w E E\ and v = bv2 € E? are both 
anisotropic. We give the following corollory.

COROLLORY 7. Assume |&/m| >5 for all maximal ideals m 으 4 
for q G Q(4), the following are equivalent :

1) q is isotrpic.
2) E contains a primitive isotropic vector.

PROOF. 1) ==> 2). This is clear.
2) => 1). Suppose x E E is primitive and isotropic. Note that 

rk(E) > 2. Let e E E be anisotropic. Then, by the above propostion, 
there exists a € O(g)such that= ui + U2,ui G Ae^U2 E (4e)丄 

are both anisotropic.

Then, 0 = q(x,x)=戒气小气时)

=g(ui+u2,ui+u2)

=戒*，理)+ q(* 凡2)・

Thus ,if a = a, >스< 1, —1 > is a orthogonal sum­
mand of g, hence, q is isotropic.
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