On a Transversality over Local Global Rings

KEE-YOUNG SHIN

ABSTRACT. The purpose of this paper prove the following property; Suppose A has many units (local global ring) and |A/m| > 5 for every maximal ideal $m \subseteq A$. Let $(E,q) \in Q(A)$ and $E = E_1 \perp \cdots \perp E_t$ be an orthogonl decomposition of E with $t \ge 2$ and $rk(E_i) \ge 1$, for $i = 1, \cdots, t$. Let $x \in E$ be a primitive vector. Then there exists $\sigma \in O(q)$ such that $\sigma(x)$ is transversal to this decomposition.

1. Introduction

We show all of these abstract theories can be applied to some quadratic forms over a ring with many units with $2 \in A^*$, where A^* : the multiplicative group of the ring A. That is, if every polynomial over A with local unit values has unit values, we call A a ring with many units or a local global ring. This work was studied by Dc-Donald and kirkwood in [7], and many properties of the new ring have been shown to parallel in many respects that of semi local ring.[1].[8].

We need some words and notations. Denote by $\mathfrak{F}(A)$ the class of all finitely generate free A-modules, a quadratic space over A is a pair (E,q), where $E \in \mathfrak{F}(A)$, and Q(A) the class of all guadratic spaces. Let $(E,q) \in Q(A), x \in E$, we say x is isotropic if q(x,x) = 0 and x is primitive if there exists $f \in \hat{E}$, where $\hat{E} = \operatorname{Hom}_A(E,A)$ such that f(x) = 1 forthermore an element $x \in E$ is said to be anisotropic if $q(x,x) \in A^*$. Note that any element in an orthogonal basis is necessarily anisotropic, clearly any istropic vetor in E is primitive.

Received by the editors on May 30, 1994.

¹⁹⁸⁰ Mathematics subject classifications: Primary 16L30.

It is well known that $e \in E$ is anistropic, then $E = Ae \oplus (Ae)^2$, where $(Ae)^2 = \{x \in E | q(x, e) = 0\}$. Let $E = E_1 \perp \cdots \perp E_t, t \geq 2$, be an orthogonal decomposition of (E, q), we say x is transversal to this decomposition if $x = x_1 + \cdots + x_t, x_i \in E_i$ is isotropic for $i = 1, \cdots, t$ If e_1, \cdots, e_n is an orthogonal basis for E and x is transversal to the decomposition $Ae_1 \perp \cdots \perp Ae_n$, then we say x is transversal to the basis e_1, \cdots, e_n .

The purpose of this paper is to prove the proposition 6, explicitly.

2. Some preliminary lemmas and result

Let $\gamma_z : E \to E$ by the A-isomorphism given by $\gamma_z(z) = -z$, $\gamma_z(y) = y$, for all $y \in (Az)^{\perp}$. So for any $x \in E$, $\gamma_z(x) = x - \frac{2q(x,x)}{q(z,z)}z$. γ_z is called the reflection determined by z and is an isometry of [E, q].

Next Lemmas are trivial.

LEMMA 1. i) Let F be a field and $(E,q) \in Q(F)$. Let $x, y \in E$ be anisotropic vectors such that q(x,x) = q(y,y). Then there exists a reflection $\gamma_z : E \to E$ such that $\gamma_z(x) = y$.

ii) Let $x \in E$ be anisotropic and $w \in (F_x)^{\perp}$ such that $q(w, w) \neq -q(x, x)$. Let $b \in F, b \neq 0$. Then there exists $a, c \in F, c \neq 0$ such that $q(ax + cw, ax + cw) = b^2 q(x, x)[10]$.

LEMMA 2. Suppose $(E,q) \in Q(A)$ with dimension $n \geq 3$. Let $x, e \in E$ be anisotropic. Then exists a reflection $\gamma_z : E \to E$ such that $\gamma_z(x) = ae + u, a \in A$ and $u \in (A_e)^{\perp}$ is anisotropic[10].

LEMMA 3. Suppose A is a field with |A| > 5. Then for each $a \in A^*$, there exists $b, c \in A^*$ such that $a = b^2 - c^2$.

PROOF. It is simple. Since |A| > 5, $|A^{*^2}| \ge 3$ and hence, there exist $d \in A^*$ such that $d^2 \ne \pm 1$. Since $d^2 = (\frac{d^2+1}{2})^2 - (\frac{d^2-1}{2})^2$, thus $1 = b^2 - c^2$ for some $b, c \in A^*$ and $-1 = c^2 - b^2$. Suppose $a \in A^*$, $a \ne \pm 1$. Then $a = (\frac{a+1}{2})^2 - (\frac{a-1}{2})^2$ so $a = b^2 - c^2$ also $b, c \in A^*$ [8].

LEMMA 4. Suppose A is a field with |A| > 5. Let $(E,q) \in Q(A)$ with $rk(E) \ge 2$ and $x, e \in E$ be anisotropic vectors. Then there exists a reflection $\gamma_z : E \to E$ such that $\gamma_z(x) = ae + u$, where $a \in A^*$ and $u \in (Ae)^{\perp}$ is anisotropic.

PROOF. Put rk(E) = 2 and $e = e_1, e_2$ be an orthogonal basis of Eand let $a_i = q(e_i, e_i)$ for i = 1, 2. Suppose there exists $y_1, y_2 \in A^*$ such that $q(x, x) = x_1^2 a_1 + x_2^2 a_2 = y_1^2 a_1 + y_2^2 a^2 = q(y_1 e_1 + y_2 e_2, y_1 e_1 + y_2 e_2)$. Then, by Lemma 1, there exist a reflection $\gamma_z : E \to E$ such that $\gamma_z(x) = \pm (y_1 e_1 + y_2 e_2)$, so taking $a = \pm y_1, u = \pm y_2 e_2$, we are done.

Thus it is sufficient to show that there exists $y_1, y_2 \in A^*$ such that $x_1^2a_1 + x_2^2a_2 = y_1^2a_1 + y_2^2a_2$. If $x_i \neq 0$, for i = 1, 2 take $y_1 = x_2, y_2 = x_2$ and we are done. Otherwise one of the x_i 's is zero, we may assume $x_2 = 0$, then we show $y_1, y_2 \in A^*$ such that $x_1^2a_1 = y_1^2a_1 + y_2^2a_2$, that is, $(\frac{x_1}{y_2})^2 - (\frac{y_1}{y_2})^2 = \frac{a_2}{a_1}$. By above Lemma, there exist $b, c \in A^*$ such that $\frac{a_2}{a_1} = b^2 - c^2$, so define y_1, y_2 by $\frac{x_1}{y_2} = b, \frac{y_1}{y_2} = c$.

Now assume $rk(E) \geq 3$. By Lemma 2, there exists a reflection $\gamma : E \to E$ such that $\gamma(x) = be + v$, $b \in A$ and $v \in (Ae)^{\perp}$ is anisotropic. Let $F = A_e \oplus Av$, $y = \gamma(x) \in F$. Since y is anisotropic, and rk(F) = 2, there exists a reflection $\tau : F \to F$ such that $\tau(y) = ce + w, c \in A^*$ and $w \in Av$ is anisotropic. Extend τ to a reflection of E so $\tau \circ \gamma(x) = ce \pm w$. By Lemma 1, there exists a reflection $\gamma_z : E \to E$ such that $\gamma_z(x) = \pm (ce + w)$ so take $a = \pm c \in A^*$ and $u = \pm w \in Av \subseteq (Ae)^{\perp}$ [12].

LEMMA 5. Suppose A is a field and $(E,q) \in Q(A)$ with $rk(E) \geq 2$. Let $x \in E$ be a primitive isotropic vector and $e \in E$ be any anisotropic vector. Then there exists a reflection $\gamma_z(x) : E \to E$ such that $\gamma_z(x) = ae + u, a \in A^*, u \in (Ae)^{\perp}$ is anisotropic.

PROOF. Put $x = be + t, b \in A, t \in (Ae)^{\perp}$.

KEE-YOUNG SHIN

If $b \neq 0$ then $0 = q(x, x) = b^2 q(e, e) + q(t, t)$ so $q(t, t) \neq 0$, thus, we can take z = e, a = -b, and u = t and we are done. So assume b = 0, that is $x \in (Ae)^{\perp}$, there exist $y \in (Ae)^{\perp}$ such that e + y is isotropic and e + x + y is anisotropic. Then, if $z = e + x + y, \gamma_z(x) = -(e + y)$ so taking a = -1 and u = -y, we are done. Indeed $z' = x - (e + y) \in (A_z)^{\perp}$. So $x = \frac{1}{2}(z+z'), e+y = \frac{1}{2}(z-z')$ and $\gamma_z(x) = -(e+y)$. Since $q(e, e) \neq 0$, and $0 = q(e + y, e + y) = q(e, e) + q(y + y), q(y, y) \neq 0$ so y is anisotropic.

We now show that such a y exist. That is, we want to find $y \in (Ae)^{\perp}$ such that 0 = q(e + y, e + y) = q(e, e) + q(y, y) and $q(e + x + y, e + x + y) = q(e, e) + q(x, x) + q(y, y) + 2q(x, y) = 2q(x, y) \neq 0$. Since $x \in (Ae)^{\perp}$ is primitive and $q|_{(Ae)^{\perp}}$ is non-degenerate, there exist $u \in (Ae)^{\perp}$ such that q(u, x) = 1. We try for $y \in (Ae)^{\perp}$ of the form $y = cx + u, c \in A$. Then, $q(x, y) = cq(x, x) + q(x, u) = 1 \neq 0$ and $q(e, e) + q(y, y) = q(e, e) + c^2 q(x, x) + 2cq(u, x) + q(u, u) = q(e, e) + q(u, u) + 2c$. Since we want this to be 0, take $c = -\frac{1}{2}(q(e, e) + q(u, u))$. We are well done [9], [12].

Next prosition is well known in case where every residue field of A is infinite [7] and similar result holds for semi local ring [1].

The purpose of this paper is to prove the transversality theorem over a local global ring explicity[11].

PROPOSITION 6. Suppose A has many units (local global ring) and |A/m| > 5 for every maximal ideal $m \subseteq A$. Let $(E,q) \in Q(A)$ and $E = E_1 \perp \cdots \perp E_t$ be an orthogonal decomposition of E with $t \geq 2$ and $rk(E_i) \geq 1$, for $i = 1, \cdots, t$. Let $x \in E$ be a primitive vector.

Then there exists $\sigma \in O(q)$ such that $\sigma(x)$ is transveral to this decomposition.

PROOF. Clearly it is sufficient to consider the case t = 2. Let $E = E_1 + E_2$ be an orthogonal decomposition of E. We go on by

induction on $k = \gamma k(E_1)$.

Suppose $k = 1, E_1 = Ae_1$, for some anisotropic $e_1 \in E$. Complete e_1 to an orthogonal basis e_1, \dots, e_n and, let $\alpha_i = q(e_i, e_i)$ for $i = 1, \dots, n$. We can write $x = \sum x_i e_i$ and suppose $z = \sum z_i e_i \in E$ is anisotropic. Then

$$\gamma_z(x) = \frac{1}{q(z,z)} \sum_{i=1}^n u_i(z_1,\cdots,z_n) e_i$$

where $u_i(z_1 \cdots, z_n) = q(z, z)e_i - 2q(x, z)z_i$, for $i = 1, \cdots, n$. Let

$$a = rac{u_1}{q(z,z)} \in A, \quad u = rac{1}{q(z,z,)} \sum_{i=2}^n u_i e_i \in (Ae_1)^\perp = E_2.$$

So we want $a \in A^*$ and $q(u, u) = \frac{1}{q(z,z)^2} \sum_{i=2}^n u_i^2 \alpha_i \in A^*$. That is, we want the polynomial

$$f(z_1, \cdots, z_n) = q(z, z) \ u_1 \ (z_1, \cdots, z_n) \sum_{i=2}^n u_i (z_1, \cdots, z_n)^2 \alpha_i$$

to have local units values. Let $m \subseteq A$ be a maximal ideal. Then $\bar{x} \in E/mE$ is primitive, and $\bar{e} \in E/mE$ is anisotropic. If \bar{x} is isotropic, then, by Lemma 5, there exists $z_1, \dots, z_n \in A$ with $f(z_1, \dots, z_n) \notin m$. If \bar{x} is anisotropic, then, since |A/m| > 5, there exists $z_1, \dots, z_n \in A$ with $f(z_1, \dots, z_n) \notin m$ by Lemma 4. Hence, f has local unit values and therefore, there exists $z = \sum z_i e_i \in E$ such that γ_z is the required isometry.

Now suppose $k \ge 2$. Let $e \in E_1$ be anisotropic and $E_1 = Ae \perp F$ be an orthogonal decomposition of E_1 . By the above, there exists a reflection $\gamma : E \to E$ such that $\gamma(x) = ae + u$, where $a \in A^*$ and $u \in F \oplus E_2$ is anisotropic. Since rk(F) = k - 1, by induction, there exists an isometry $\tau : F \oplus E_2 \to F \oplus E_2$ such that $\tau(u) = u_1 + u_2$, where $u_1 \in F \subseteq E_1$ and $u_2 \in E_2$ are both anisotrpic. Extend τ to an isometry of E so that $\tau(e) = e$. Let $v_1 = ae + u_1 \in E$, and $v_2 = u_2 \in E_2$. Then to $\tau \circ \gamma(x) = \tau(ae + u) = ae + u_1 + u_2 = v_1 + v_2 \in Av_2 \oplus E_1$. Since $\tau \circ \gamma(x)$ is primitive and $rk(Av_2) = 1$, there exists a reflection $\gamma' : Av_2 \oplus E_1 \to Av_2 \oplus E_1$ such that $\gamma'(v_1 + v_2) = bv_2 + w$, where $b \in A^*$ and $w \in E_1$ is anisotropic. Extend γ' to a reflection of E. Then $\gamma' \circ \tau \circ \gamma(x) = w + v$, where $w \in E_1$ and $v = bv_2 \in E_2$ are both anisotropic. We give the following corollory.

COROLLORY 7. Assume |A/m| > 5 for all maximal ideals $m \subseteq A$. for $q \in Q(A)$, the following are equivalent:

1) q is isotrpic.

2) E contains a primitive isotropic vector.

PROOF. 1) \implies 2). This is clear.

2) \Longrightarrow 1). Suppose $x \in E$ is primitive and isotropic. Note that $rk(E) \ge 2$. Let $e \in E$ be anisotropic. Then, by the above proposition, there exists $\sigma \in O_{(q)}$ such that $\sigma(x) = u_1 + u_2, u_1 \in Ae, u_2 \in (Ae)^{\perp}$ are both anisotropic.

Then,
$$0 = q(x, x) = q(\sigma_{(x)}, \sigma_{(x)})$$

= $q(u_1 + u_2, u_1 + u_2)$
= $q(u_1, u_2) + q(u_1, u_2).$

Thus, if $a = q(u_1, u_1), \langle a, -a \rangle \cong \langle 1, -1 \rangle$ is a orthogonal summand of q, hence, q is isotropic.

References

1. R.Baesa, Quadratic Forms over Semilocal Rings, Lectur Notes in Math springer Verlag (1978), 655.

- 2. R. Elman and T.Y. Lam, Classification thorems for quadratic forms over fields, Comm Math Helv 49 (1974), 373-381.
- 3. D. Estes and Guralnick, Module equivalences: local to global when primitive polynomials represent units, J.alg 77 (1982), 138-157.
- M.Knebusch, A.Rosenberg and R.Ware, strecuture of Witt rings and quotionts of abelian group rings, Amer. J.Math 94 (1972), 119-155.
- M.Knebusch, A.Rosenberg and R.Ware, signatures on semilocal rings, J.Arg 26 (1973), 208-250.
- M.Marshall, Bilinear Foms and Orderings on Commutative Rings, Queens's Papers on Pure and Appl. Math 71 (1985).
- 7. B.McDonald and B.Kirkwood, Transversals and symmetric inner product spaces preprint.
- 8. T.Y.Lam, The Algebraic Theory of Quadratic Forms, W.A Benjamin.Inc (1973).
- 9. T.Y.Lam, M.Knebush, W.Scharlau, Conference on Quadratic Forms, Queens's Papers on Pure and Appl. Math (1977).
- 10. W.Scharlau, Quadratic and Hermitian Forms, Springer-Verlag (1985).
- 11. Kee-Young Shin, A study on the Quadratic form over LG-Rings, for the degree of doctor of science in the Dept. of Math., Univ. of Korea (1988).
- 12. L.J. Walter, Quadratic forms ordering and Quaternion Algebras over ring with many units, Univ. of Saskatchewain (1988).

DEPARTMENT OF MATHEMATICS TAEJON UNIVERSITY TAEJON, 300-716, KOREA