On a Transversality over Local Global Rings

Kee-Young Shin

Abstract

The purpose of this paper prove the following property; Suppose A has many units (local global ring) and $|A / m|>5$ for every maximal ideal $m \subseteq A$. Let $(E, q) \in Q(A)$ and $E=E_{1} \perp \cdots \perp E_{t}$ be an orthogonl decomposition of E with $t \geq 2$ and $r k\left(E_{i}\right) \geq 1$, for $i=1, \cdots, t$. Let $x \in E$ be a primitive vector. Then there exists $\sigma \in O(q)$ such that $\sigma(x)$ is transversal to this decomposition.

1. Introduction

We show all of these abstract theories can be applied to some quadratic forms over a ring with many units with $2 \in A^{*}$, where A^{*} : the multiplicative group of the ring A. That is, if every polynomial over A with local unit values has unit values, we call A a ring with many units or a local global ring. This work was studied by DcDonald and kirkwood in [7], and many properties of the new ring have been shown to parallel in many respects that of semi local ring.[1].[8].

We need some words and notations. Denote by $\mathfrak{F}(A)$ the class of all finitely generate free A-modules, a quadratic space over A is a pair (E, q), where $E \in \mathfrak{F}(A)$, and $Q(A)$ the class of all guadratic spaces. Let $(E, q) \in Q(A), x \in E$, we say x is isotropic if $q(x, x)=0$ and x is primitive if there exists $f \in \hat{E}$, where $\hat{E}=\operatorname{Hom}_{A}(E, A)$ such that $f(x)=1$ forthermore an element $x \in E$ is said to be anisotropic if $q(x, x) \in A^{*}$. Note that any element in an orthogonal basis is necessarily anisotropic, clearly any istropic vetor in E is primitive.

Received by the editors on May 30, 1994.
1980 Mathematics subject classifications: Primary 16L30.

It is well known that $e \in E$ is anistropic, then $E=A e \oplus(A e)^{2}$, where $(A e)^{2}=\{x \in E \mid q(x, e)=0\}$. Let $E=E_{1} \perp \cdots \perp E_{t}, t \geq 2$, be an orthogonal decomposition of (E, q), we say x is transversal to this decomposiition if $x=x_{1}+\cdots+x_{t}, x_{i} \in E_{i}$ is isotropic for $i=1, \cdots, t$ If e_{1}, \cdots, e_{n} is an orthogonal basis for E and x is transversal to the decomposition $A e_{1} \perp \cdots \perp A e_{n}$, then we say x is transversal to the basis e_{1}, \cdots, e_{n}.

The purpose of this paper is to prove the proposition 6 , explicitly.

2. Some preliminary lemmas and result

Let $\gamma_{z}: E \rightarrow E$ by the A-isomorphism given by $\gamma_{z}(z)=-z$, $\gamma_{z}(y)=y$, for all $y \in(A z)^{\perp}$. So for any $x \in E, \gamma_{z}(x)=x-\frac{\left.2 q_{(} x, x\right)}{\left.q_{(} z_{z}\right)} z$. γ_{z} is called the reflection determined by z and is an isometry of $[E, q]$.

Next Lemmas are trivial.
Lemma 1. i) Let F be a field and $(E, q) \in Q(F)$. Let $x, y \in E$ be anisotropic vectors such that $q(x, x)=q(y, y)$. Then there exists a reflection $\gamma_{z}: E \rightarrow E$ such that $\gamma_{z}(x)=y$.
ii) Let $x \in E$ be anisotropic and $w \in\left(F_{x}\right)^{\perp}$ such that $q(w, w) \neq$ $-q(x, x)$. Let $b \in F, b \neq 0$. Then there exists $a, c \in F, c \neq 0$ such that $q(a x+c w, a x+c w)=b^{2} q(x, x)[10]$.

Lemma 2. Suppose $(E, q) \in Q(A)$ with dimension $n \geq 3$. Let $x, e \in E$ be anisotropic. Then exists a reflection $\gamma_{z}: E \rightarrow E$ such that $\gamma_{z}(x)=a e+u, a \in A$ and $u \in\left(A_{e}\right)^{\perp}$ is anisotropic[10].

Lemma 3. Suppose A is a field with $|A|>5$. Then for each $a \in A^{*}$, there exists $b, c \in A^{*}$ such that $a=b^{2}-c^{2}$.

Proof. It is simple. Since $|A|>5,\left|A^{*^{2}}\right| \geq 3$ and hence, there exist $d \in A^{*}$ such that $d^{2} \neq \pm 1$. Since $d^{2}=\left(\frac{d^{2}+1}{2}\right)^{2}-\left(\frac{d^{2}-1}{2}\right)^{2}$, thus $1=b^{2}-c^{2}$ for some $b, c \in A^{*}$ and $-1=c^{2}-b^{2}$. Suppose $a \in A^{*}$, $a \neq \pm 1$. Then $a=\left(\frac{a+1}{2}\right)^{2}-\left(\frac{a-1}{2}\right)^{2}$ so $a=b^{2}-c^{2}$ also $b, c \in A^{*}[8]$.

Lemma 4. Suppose A is a field with $|A|>5$. Let $(E, q) \in Q(A)$ with $r k(E) \geq 2$ and $x, e \in E$ be anisotropic vectors. Then there exists a reflection $\gamma_{z}: E \rightarrow E$ such that $\gamma_{z}(x)=a e+u$, where $a \in A^{*}$ and $u \in(A e)^{\perp}$ is anisotropic.

Proof. Put $r k(E)=2$ and $e=e_{1}, e_{2}$ be an orthogonal basis of E and let $a_{i}=q\left(e_{i}, e_{i}\right)$ for $i=1,2$. Suppose there exists $y_{1}, y_{2} \in A^{*}$ such that $q(x, x)=x_{1}^{2} a_{1}+x_{2}^{2} a_{2}=y_{1}^{2} a_{1}+y_{2}^{2} a^{2}=q\left(y_{1} e_{1}+y_{2} e_{2}, y_{1} e_{1}+y_{2} e_{2}\right)$. Then, by Lemma 1 , there exist a reflection $\gamma_{z}: E \rightarrow E$ such that $\gamma_{z}(x)= \pm\left(y_{1} e_{1}+y_{2} e_{2}\right)$, so taking $a= \pm y_{1}, u= \pm y_{2} e_{2}$, we are done.

Thus it is sufficient to show that there exists $y_{1}, y_{2} \in A^{*}$ such that $x_{1}^{2} a_{1}+x_{2}^{2} a_{2}=y_{1}^{2} a_{1}+y_{2}^{2} a_{2}$. If $x_{i} \neq 0$, for $i=1,2$ take $y_{1}=x_{2}, y_{2}=x_{2}$ and we are done. Otherwise one of the x_{i} 's is zero, we may assume $x_{2}=0$, then we show $y_{1}, y_{2} \in A^{*}$ such that $x_{1}^{2} a_{1}=y_{1}^{2} a_{1}+y_{2}^{2} a_{2}$, that is, $\left(\frac{x_{1}}{y_{2}}\right)^{2}-\left(\frac{y_{1}}{y_{2}}\right)^{2}=\frac{a_{2}}{a_{1}}$. By above Lemma, there exist $b, c \in A^{*}$ such that $\frac{a_{2}}{a_{1}}=b^{2}-c^{2}$, so define y_{1}, y_{2} by $\frac{x_{1}}{y_{2}}=b, \frac{y_{1}}{y_{2}}=c$.

Now assume $r k(E) \geq 3$. By Lemma 2, there exists a reflection $\gamma: E \rightarrow E$ such that $\gamma(x)=b e+v, b \in A$ and $v \in(A e)^{\perp}$ is anisotropic. Let $F=A_{e} \oplus A v, y=\gamma(x) \in F$. Since y is anisotropic, and $r k(F)=2$, there exists a reflection $\tau: F \rightarrow F$ such that $\tau(y)=$ $c e+w, c \in A^{*}$ and $w \in A v$ is anisotropic. Extend τ to a reflection of E so $\tau \circ \gamma(x)=c e \pm w$. By Lemma 1, there exists a reflection $\gamma_{z}: E \rightarrow E$ such that $\gamma_{z}(x)= \pm(c e+w)$ so take $a= \pm c \in A^{*}$ and $u= \pm w \in A v \subseteq(A e)^{\perp}[12]$.

Lemma 5. Suppose A is a field and $(E, q) \in Q(A)$ with $r k(E) \geq$ 2. Let $x \in E$ be a primitive isotropic vector and $e \in E$ be any anisotropic vector. Then there exists a reflection $\gamma_{z}(x): E \rightarrow E$ such that $\gamma_{z}(x)=a e+u, a \in A^{*}, u \in(A e)^{\perp}$ is anisotropic.

Proof. Put $x=b e+t, b \in A, t \in(A e)^{\perp}$.

If $b \neq 0$ then $0=q(x, x)=b^{2} q(e, e)+q(t, t)$ so $q(t, t) \neq 0$, thus, we can take $z=e, a=-b$, and $u=t$ and we are done. So assume $b=0$, that is,$x \in(A e)^{\perp}$, there exist $y \in(A e)^{\perp}$ such that $e+y$ is isotropic and $e+x+y$ is anisotropic. Then, if $z=e+x+y, \gamma_{z}(x)=-(e+y)$ so taking $a=-1$ and $u=-y$, we are done. Indeed $z^{\prime}=x-(e+y) \in$ $\left(A_{z}\right)^{\perp}$. So $x=\frac{1}{2}\left(z+z^{\prime}\right), e+y=\frac{1}{2}\left(z-z^{\prime}\right)$ and $\gamma_{z}(x)=-(e+y)$. Since $q(e, e) \neq 0$, and $0=q(e+y, e+y)=q(e, e)+q(y+y), q(y, y) \neq 0$ so y is anisotropic.

We now show that such a y exist. That is, we want to find $y \in$ $(A e)^{\perp}$ such that $0=q(e+y, e+y)=q(e, e)+q(y, y)$ and $q(e+x+$ $y, e+x+y)=q(e, e)+q(x, x)+q(y, y)+2 q(x, y)=2 q(x, y) \neq 0$. Since $x \in(A e)^{\perp}$ is primitive and $\left.q\right|_{(A e)^{\perp}}$ is non-degenerate, there exist $u \in(A e)^{\perp}$ such that $q(u, x)=1$. We try for $y \in(A e)^{\perp}$ of the form $y=c x+u, c \in A$. Then, $q(x, y)=c q(x, x)+q(x, u)=1 \neq 0$ and $q(e, e)+q(y, y)=q(e, e)+c^{2} q(x, x)+2 c q(u, x)+q(u, u)=q(e, e)+$ $q(u, u)+2 c$. Since we want this to be 0 , take $c=-\frac{1}{2}(q(e, e)+q(u, u))$. We are well done [9], [12].

Next prosition is well known in case where every residue field of A is infinite [7] and similar result holds for semi local ring [1].

The purpose of this paper is to prove the transversality theorem over a local global ring explicity[11].

Proposition 6. Suppose A has many units (local global ring) and $|A / m|>5$ for every maximal ideal $m \subseteq A$. Let $(E, q) \in Q(A)$ and $E=E_{1} \perp \cdots \perp E_{t}$ be an orthogonal decomposition of E with $t \geq 2$ and $r k\left(E_{i}\right) \geq 1$, for $i=1, \cdots, t$. Let $x \in E$ be a primitive vector.

Then there exists $\sigma \in O(q)$ such that $\sigma(x)$ is transveral to this decomposition.

Proof. Clearly it is sufficient to consider the case $t=2$. Let $E=E_{1}+E_{2}$ be an orthogonal decomposition of E. We go on by
induction on $k=\gamma k\left(E_{1}\right)$.
Suppose $k=1, E_{1}=A e_{1}$, for some anisotropic $e_{1} \in E$. Complete e_{1} to an orthogonal basis e_{1}, \cdots, e_{n} and, let $\alpha_{i}=q\left(e_{i}, e_{i}\right)$ for $i=$ $1, \cdots, n$. We can write $x=\sum x_{i} e_{i}$ and suppose $z=\sum z_{i} e_{i} \in E$ is anisotropic. Then

$$
\gamma_{z}(x)=\frac{1}{q(z, z)} \sum_{i=1}^{n} u_{i}\left(z_{1}, \cdots, z_{n}\right) e_{i}
$$

where $u_{i}\left(z_{1} \cdots, z_{n}\right)=q(z, z) e_{i}-2 q(x, z) z_{i}$, for $i=1, \cdots, n$. Let

$$
a=\frac{u_{1}}{q(z, z)} \in A, \quad u=\frac{1}{q(z, z,)} \sum_{i=2}^{n} u_{i} e_{i} \in\left(A e_{1}\right)^{\perp}=E_{2} .
$$

So we want $a \in A^{*}$ and $q(u, u)=\frac{1}{q(z, z)^{2}} \sum_{i=2}^{n} u_{i}^{2} \alpha_{i} \in A^{*}$. That is, we want the polynomial

$$
f\left(z_{1}, \cdots, z_{n}\right)=q(z, z) u_{1}\left(z_{1}, \cdots, z_{n}\right) \sum_{i=2}^{n} u_{i}\left(z_{1}, \cdots, z_{n}\right)^{2} \alpha_{i}
$$

to have local units values. Let $m \subseteq A$ be a maximal ideal. Then $\bar{x} \in E / m E$ is primitive, and $\bar{e} \in E / m E$ isanisotropic. If \bar{x} is isotropic, then , by Lemma 5 , there exists $z_{1}, \cdots, z_{n} \in A$ with $f\left(z_{1}, \cdots, z_{n}\right) \notin m$. If \bar{x} is anisotropic, then, since $|A / m|>5$, there exists $z_{1}, \cdots, z_{n} \in A$ with $f\left(z_{1}, \cdots, z_{n}\right) \notin m$ by Lemma 4. Hence, f has local unit values and therefore, there exists $z=\Sigma z_{i} e_{i} \in E$ such that γ_{z} is the required isometry.

Now suppose $k \geq 2$. Let $e \in E_{1}$ be anisotropic and $E_{1}=A e \perp F$ be an orthogonal dccomposition of E_{1}. By the above, there exists a reflection $\gamma: E \rightarrow E$ such that $\gamma(x)=a \epsilon+u$, where $a \in A^{*}$ and $u \in F \oplus E_{2}$ is anisotropic. Since $r k(F)=k-1$, by induction, there
exists an isometry $\tau: F \oplus E_{2} \rightarrow F \oplus E_{2}$ such that $\tau(u)=u_{1}+u_{2}$, where $u_{1} \in F \subseteq E_{1}$ and $u_{2} \in E_{2}$ are both anisotrpic. Extend τ to an isometry of E so that $\tau(e)=e$. Let $v_{1}=a e+u_{1} \in E$, and $v_{2}=u_{2} \in$ E_{2}. Then to $\tau \circ \gamma(x)=\tau(a e+u)=a e+u_{1}+u_{2}=v_{1}+v_{2} \in A v_{2} \oplus E_{1}$. Since $\tau \circ \gamma(x)$ is primtive and $r k\left(A v_{2}\right)=1$, there exists a reflection $\gamma^{\prime}: A v_{2} \oplus E_{1} \rightarrow A v_{2} \oplus E_{1}$ such that $\gamma^{\prime}\left(v_{1}+v_{2}\right)=b v_{2}+w$, where $b \in A^{*}$ and $w \in E_{1}$ is anisotropic. Extend γ^{\prime} to a reflection of E. Then $\gamma^{\prime} \circ \tau \circ \gamma(x)=w+v$, where $w \in E_{1}$ and $v=b v_{2} \in E_{2}$ are both anisotropic. We give the following corollory.

Corollory 7. Assume $|A / m|>5$ for all maximal ideals $m \subseteq A$. for $q \in Q(A)$, the following are equivalent :

1) q is isotrpic.
2) E contains a primitive isotropic vector.

Proof. 1) $\Longrightarrow 2$). This is clear.
$2) \Longrightarrow 1$). Suppose $x \in E$ is primitive and isotropic. Note that $r k(E) \geq 2$. Let $e \in E$ be anisotropic. Then, by the above propostion, there exists $\sigma \in O_{(q)}$ such that $\sigma(x)=u_{1}+u_{2}, u_{1} \in A e, u_{2} \in(A e)^{\perp}$ are both anisotropic.

$$
\text { Then, } \begin{aligned}
0=q(x, x) & =q\left(\sigma_{(x)}, \sigma_{(x)}\right) \\
& =q\left(u_{1}+u_{2}, u_{1}+u_{2}\right) \\
& =q\left(u_{1}, u_{2}\right)+q\left(u_{1}, u_{2}\right) .
\end{aligned}
$$

Thus, if $\left.a=q\left(u_{1}, u_{1}\right),<a,-a\right\rangle \cong<1,-1>$ is a orthogonal summand of q, hence, q is isotropic.

References

1. R.Baesa, Quadratic Forms over Semilocal Rings, Lectur Notes in Math springer Verlag (1978), 655.
2. R. Elman and T.Y. Lam, Classification thorems for quadratic forms over fields, Comm Math Helv 49 (1974), 373-381.
3. D. Estes and Guralnick, Module equivalences:local to global when primitive polynomials represent units, J.alg 77 (1982), 138-157.
4. M.Knebusch, A.Rosenberg and R.Ware, strecuture of Witt rings and quotionts of abelian group rings, Amer. J.Math 94 (1972), 119-155.
5. M.Knebusch, A.Rosenberg and R.Ware, signatures on semilocal rings, J.Arg 26 (1973), 208-250.
6. M.Marshall, Bilinear Foms and Orderings on Commutative Rings, Queens's Papers on Pure and Appl. Math 71 (1985).
7. B.McDonald and B.Kirkwood, Transversals and symmetric inner product spaces preprint.
8. T.Y.Lam, The Algebraic Theory of Quadratic Forms, W.A Benjamin.1nc (1973).
9. T.Y.Lam, M.Knebush, W.Scharlau, Conference on Quadratic Forms, Queens's Papers on Pure and Appl. Math (1977).
10. W.Schatlau, Quadratic and Hermitian Forms, Springer-Verlag (1985).
11. Kee-Young Shin, A study on the Quadratic form over LG-Rings, for the degree of doctor of science in the Dept. of Math., Univ. of Korea (1988).
12. L.J. Walter, Quadratic forms ordering and Quaternion Algebras over ring with many units, Univ. of Saskatchewain (1988).

Department of Mathematics

Taejon University
Taejon, 300-716, Korea

