FSHESAT
H4A28
1994 128

O’LDM : 7B A A &k =g]
dlo] el 23S 9]3t o]

4 2 8

O’LDM : A Language for Object-Oriented
Logic Data Modeling

In this paper we describe a new data modeling language we call O°LDM. O°LDM incorporates
features from object—oriented and logic approaches. In OLDM there is a rich collection of ob}ek:ts
organized In a type hierarchy. It is possible to compose queries that involve field sefection, func-
tion application and other constructs which transcend the usual, strictly syntactic, matching of
PROLOG. We give the features of OL.DM and motivate its utility for conceptual modeling. We
have a prototype implementation for the ianguage, which we have written in ML, In this paper we
describe an executable semantics of the deductive process used in the language. We work some

examples to illustrate the expressive power of the language, and compare GLDM to PROLOG.

1) Ardasha 4 9e} 2as

| . Introduction

In this paper we describe a new data
modeling language, OL.LDM, which inte-
grates features from two major data mod-
eling paradigms, object—oriented and rela-
tional (logic). The language is designed to
serve as a basis for developing knowledge—
based systems. Its most novel aspect is the
enhanced unification algorithm for making
deduction in the presence of structured ob-
jects.

Several researchers have argued for in-
corporating many paradigms within the
same environment to provide all the con-
structs necessary for building knowledge—
based [Borgida 1985, Fikes

1985]. Numerous multiparadigm environ-

systems

ments for developing knowledge-based
systems have been built; the most notable
ones being LLOOPS [Bobrow 1983, Bobrow
1985] and KEE [Fikes 1985]. However,
these multiparadigm programming envi-
ronments are usually integrated by embed-
ding one or more paradigms on top of an-

other. This makes it difficult to understand

all the interactions between features. We

have tried to identify the language require-
ments of conceptual modeling or knowl-
edge-based programming and build them

into the language from the outset. In this

respect O°’LDM is like the language
FOOPlog[Goguen 1987]. We have ob-
served that representing arbitrary rela-
tions among objects and reasoning based
on these arbitrary relations are often diffi-
cult to express. Furthermore, type systems
are often not capable of detecting trivial
errors. With type information the system
can detect certain kinds of errors that con-
flict in an obvious manner with the concep-
tual model. Typed 'lang.uages are sure to
play an important role in conceptual mod-
eling and high-level database languageé‘
A useful survey can be found in
[Atkinson 19871,

QOur goal was to study the semantics of
combining the paradigms in a strongly
typed language. In particular we wanted O
LDM :

— to build inheritance into the logical in-
ference process;

— to provide primitives for modeling do-
main objects;

— to allow for function definitions and ap-
plications;

— to allow arbitrary objects to stand in
relations; and

— to provide compile-time type checking.

O’LDM' was greatly influenced by the
language Galileo [Albano 1985] and ML ’
[Milner 1990]. Another language with

similar goals is Machiavelli [Ohori 1989].
Like O)LDM, Machiavelll 1s designed
around a collection of statically typed ob-
jects which make it well suited for concep-
tual modeling, and also influenced by ML.
One important contribution of Machiavelli
is the automatic type reconstruction.
Machiavelli is also able to express queries
involving complex objects with natural-
ness.

The BiggerTalk[Gullichsen 1985]
system 1s also related. Here the goal is to
build an object—oriented interface in PRO-
LOG based on message passing. The pro-
grammer can dynamically restructure the
classification of objects. This paper is or-
ganized as follows. The next section intro-
duces the language syntax and presents a
simple example to give the flavor of the
language. Also O°’LDM is compared with
PROLOG in modeling domain knowledge.
The third section gives an executable se-

mantics of the deductive process used in O
LDM.

. The O°LDM Language

Programming in O)LDM can be divided
into three fundamentally distinct phases.
The first phase involves the specification

of the domain. The domain is specified by

5

a series of type and relation declarations.
Type declarations descriObe the various en-
tity types in the domain. Relation declara-
tions specify associations between entity
types in the domain.

In the second phase the individual ob-
jects, facts and rules for a particular in-
stance of the domain are entered. Domain
objects are represented in the systems by
creating instances of entity types. A do-
main object, once created, can be bound to
an identifier; any subsequent reference to
the identifier in the system is a reference
to the entity that the identifier denotes.

Facts state assoclations among objects
in the domain. Rules are used to express
facts that depend on other facts. All the
domain objects, facts, and rules entered in
this phase must be type consistent with the
domain specifications.

Through type checking the language en-
sures this type consistency. In the third
phase the user enters into an interactive
dialogue with the system. The user enters
either an expression or query into the
system and the system responds with one
or more solutions. The system’s response
to an expression is its value. If a query is
entered, the system responds by finding
the solutions that satisfy the query. Again,

the type consistency of the expressions

and queries entered is checked against the
domain specifications.

In this section of the paper, we present
an overview of the constructs in O’LDM.
We discuss types, multiple inheritance, ex-
pressions, predicates, facts, rules, and quer-
ies. The complete syntax of the language
is summarized in Figures 1 and 2. Figure 1
is the syntax for type declarations, and the
syntax for expressions. Figure 2 illustrates
the syntax for predicate signatures, facts,
rules, and queries.

The following notational conventions are
used in the figures :

— Keywords are in bold.
— For any syntax class S,

we define S_1st;:=S 1, ------ »S n.
— For any syntax class T,

we define T seq::=T ; -+ ; T n.
1. Expressions and their types

The language has the usual sorts of con-
structs: records, variant records, func-
tions, etc. The languagé 1s essentially iden-
tical to the language studied by Cardelli
[cardelli 1988] with the addition of rela-
tions. ’

Records are unordered, labeled sets of
values: [a:=3; b:=true] has type [a:

int; b:bool], where a and b are labels. In

general a record [1 1:=e 1; - ; 1.n:
=e nlhasatypell 1l:iz 1; -+ ;1 nic
n], where 1 1, ----- , 1 n are labels, e 1,
------ , 'e_n are expressions, 7 1, *==»+, 7. n

are types, and where the expressions e_l,
------ , en are of types r 1, ===+, 7.1,
respectively.

Labels are a separate domain; they are
not identifiers or strings, and they cannot
be computed by an expression in the lan-
guage. While records are labeled cartesian
products, a variant is a labeled disjoint
sum. A variant type looks syntactically
like a record type; it is an unordered set
of label-type pairs, enclosed in curly brac-
es instead of brackets. An element of a
variant type is a labeled explression,
where the label is one of the labels in the
variant type, and the expression has a
type matching the type associated with
that label.

The case statement is used to manipu-
late variant records in a type-safe man-
ner. For example, an object of type {a:int;
b:bool} is either an integer labeled a or a
boolean labeled b. Thus the two objects
{a:=5} and {b:=false} are objects of
type {a:int; b:bool}.

A function can be defined in the lan-
guage using the lambda expression of the

form: fun(x:r).e, where x is the parame

type-binding: . =
type ident & type

type..=
ident |
bool |
int |
string |
[field~type-seq] |
{field-type-seq} |
type — type

field-type:: =
label:type

ident-binding: . =
val ident & expr

expr..=
boolean |
integer |
string-constant |
ident !
object |
logic—var |
expr.label |
case expr of discrim-seq endcase |
expr{expr) |
fun(ident:type).expr |
expr.iype

diserim: ! =
label: :ident = expr

object: =
[field seq] |
{field}

field:: =
label: =expr

Figure 1. Type declarations and expressions

8

ter of the function whose type is 7, and
where e Is an expression— given in terms
of the parameter —that is used to compute
the value of the function. Lambda expres-
sions in the language evaluate to func-
tions. The type of the function ‘fun(x:r).e

is r — ¢, where ris the type of the argu-

ment, and o the type of the result of func-.

tion evaluation. For the sake of simplicity
we allow for only unary functions in the
language, i.e., functions with only one ar-
gument. 7
The language does not allow recursive
type or function definitions. Since func-
tions in the language are first-class val-
ues, they may be passed as arguments to
other functions or be the result of function
evaluations. A function is treated like any
other object in the system. Hence, records
in the language can have functional com-

ponents.
2. Multiple Inheritance

There is an implicit inheritance relation
between types that is based on the struc-
ture of the typés. This is in contrast to
some object—oriented languages, such as
Smalltalk[Goldberg 1983] where classes

are explicitly named and where the inheri-

~ tance relation between classes is explicitly

declared by the user.

We say that a type is a subtype of or is
included in another type r when all the ob-
jects denoted by type are also objects de-
noted by type r. Subtyping on record types
corresponds roughly to the concept of in-
heritance in object-oriented languages.
This correspondence i1s due to Cardelli
[Cardelli 1988], and is now widespread in
statically typed object-oriented languages.
This notion of subtyping based on records
permits a type to have supertypes which
themselves are not related. Such objects in-
herit attributes from multiple sources.

Type declarations in the language intro-
duce names for type expressions. Names
for type expressions serve as abbrevia-
tions; they do not create new types. We
use structural equivalence on types: tWo
types are equivalent in the language only

when they have the same structure.
3. Logic programming

In the languagé, facts and rules are used
to assert the relationships between objects.
Given facts and rules, queries in the lan-

guage are used to find unknown objects

that satisfy one or more relations.

(1) Literals

A literal in the language is an n-ary

predicate of the following form:

where p is a predicate symbol, and the ar-
gument e i's are valid expressions in the
language. Although literals in the lan-
guage appear to be similar to their coun-
terparts in PROLOG, there are important
differences in their usage and interpreta-
tion. In O’LDM, field selection, function ap-
plication and other constructs can be used
in a literal, even in conjunction with varia-
bles.

Another difference between PROLOG
and O’LDM literals, is that in O°’LDM the
arguments of a literal are restricted to be
expressions from specific domains, 1.e., the
arguments of a literal are typed. The type
of the arguments of a literal depends upon
the signature of the predicate. This is dif-
ferent from PROLOG, where there are no
restrictions on the arguments of a literal.

Every literal in the program can be stati-
cally checked to verify that the type of the
arguments do not conflict with the signa-
ture specification of the predicate. A disad-
vantage of restricting the arguments of a
literal to specific domains is that it is no
longer possible to consider the entire

untyped collection of objects as a whole.

9

However, this appears to be of little use,
especially if the type structure is expres-

sive and convenient.

(2) Predicate Signatures

In the language the signature or type of
every predicate must be specified prior to
its use In a literal. For example, the follow-
Ing signature specification in the lan-

guage.
Signature p(e, [b:£])

states that the signature of the predicate p
1s a binary relation {or predicate) between
expressions of type and the record type
[b:#]. Every occurrence of the predicate
symbol, p, in a relation must have exactly
two arguments and their types must be,
and [b:A] respectively.

Let o 1 and o_2 be objects of type @, o_
3 and o_4 objects of tybe B, and o 5and o_
6 objects of type 8. The expression [b : =
o 3] is a record of type [b:f8]. The follow-
Ing 1s a wellHformed literal in the lan-

guage.
p(o 1,[b:=0_3)])

Let the identifier m be bound to record [b :
= 0_4] in the environment, and identifier
n to the record [d := o 5]. If f is a func-

tion whose type is [b:f] — B and the

10

predicate q is a binary relation of types 8
and {d:8], here are some additional exam-

ples of well-formed literals:

q(m.b, n)
q(f(m), [d:=0_6])

The argument m.b in the first hiteral is
field selection, and f(m) in the second lit-
eral 1s function application. The expression
m.b, n, and f(m) in the above literals are
not in normal form; they are shown in the
form a user may enter them. The system,
however, replaces the above expressions
by their normal forms, when it stores the

literals in the knowledge base. Let r be a

predicate whose signature is a binary rela-
tion of type and. Clearly any object of
type can participate in a relation that in-
volves the predicate r. Since type is a sub-
type of type , objects of type can also par-
ticipate in relations that involve the predi-
cate r. For example, if s is a binary predi-

cate whose signature is..
signature s([a:a], B)

and g a function whose type is [b:8] — 5,

the following is a well-formed literal:

s([a:=0_1; b:=0_3], g([a:=0_2;
b:=0_3]))

predicate-signature: ! =

fact—defn:: =
fact litera

rule—defn::=
query: .=

logic-var-decl:: =
ogic—var . type
prop.:=
literal
condition
literal:: =
ident(expr_lst)
condition::=
eXpr==expr
expr! ! =expr

signature ident (type Ist)

let logic—var-decl seq in fact literal
let logic—var~decl_seq in rule literal & prop lst

let logic—var—decl_seq in list expr such that prop_lst

Figure 2 : Signature, Facts, Rules, and Queries

In the above literal, the function g can
be applied to the argument [a: =0 1; b: =
0_3], because the type of the argument is
a subtype of the domain type of the func-
tion. The above literal is well-formed be-
cause, the type of the first argument is a
subtype of [a:a], and the result of func-
tion, g, is of type B.

It is important to reiterate that any-
where an expression of type is allowed it
can be replaced by an expression of type r,

if 7 is a subtype of ¢.

(3) Clauses

A clause in the language has the form:

This means that A is provable if all the
B 1 are provable. The literal A is the head
of the clause, and the B 1, -+ ,Bnis
the bod3\/.

(4) Facts and Rules

We saw in the preceding section that the
signature of every relation (predicate) is
to be specified prior to its use in a literal.
In the language there are two types of re-
lations—primitive and defined relations.
Primitive relations are relations that de-
note assoclations among entity types in the

domain. These associations are indepen-

11

dent of other relations in the domain.
Primitive relations are usually defined dur-
ing the first phase of programming in the
language. We declare a primitive relation
by specifying its signature.

Once primitive relations have been de-
clared, facts based on these primitive rela-
tions can be asserted. Facts state associa-
tions among individual entities, not among
the types of the entities. Consider the fol-

lowing predicate signatures:

signature ql{([b:4], [d:é])
signature q2(a, [b:8])

Let o 1 and o_2 be objects of type a, o_
3 and o_4 objects of type §, and o 5 an ob-
ject of type 8. Suppose we want to specify
that the two objects [b:=0 3} and [d:=o0_
57 stand in the relation ql. We do this in
the language by asserting the following

fact:
fact q1({b:=o0_3], [d:=0 5])

The arguments of the above fact are
consistent with the signature of the predi-
cate ql.

Suppose we want to specify that all ob-
jects of type [b: 8] in the domain are relat-
ed to the object [d: =0 5] by the relation-
ship ql. We do this by asserting the follow-

ing fact!

12
let U:[b:A] in fact q1(U, [d := 0 5])

. The logic variable U stands for an object
of type [b:8). Every logic variable in the
language is typed, and its syntactic scope
is limited to the fact or rule that follows
the declaration. Logic variables in the lan-
guage are denoted by upper case letters.

Suppose m is an identifier that is bound
to the record [a:=o0_1; di=0_5] in the
environment. The following fact asserts
that the field labeled a in the record, identi-
fied by m, is related to the object [b:=o0_

4] by the relationship q2:

fact @2(m.a, [b : = 0 4])

In the above fact the expression m.a is
not in normal form; it is shown in the
form the user enters. The system, howev-
er, stores the fact with the expression m.a

replaced by its normal form:
fact q2(o_1, [b: =0 4])

Defined relations are relations that de-
note associations among entities also. But
unlike primitive relations, these associa-
tions are dependent on other relations. In
other words, the relation is defined in
terms of conditions or constraints that,
when met, implies that the relationship

holds. Defined relations are more common-

ly referred to as rules.

To state rules in the language, we need
logic variables. A logic variable stands for
the same object wherever it occurs in the
rule. Consider the following rule in the lan-

guage:

let P:[aie], Q:[b:8]in
rule g3(P, Q.b) & ql(Q, [d:=0.5)),
q2(Pa, Q)

where g3 is the defined relation-the
head of the rule.

The relations ql and g2 are the condi-
tions that need to be satisfied for g3 to
hold — the body of the rule. It is important
1o note, that it was not necessary to speci-
fy the signature of the predicate q3 prior
to the rule definition. Since the signature
of g3 is dependent on the types of the ex-
pressions ‘P and Q.b, it can be easily deter-
mined. The signature of q3 is the binary
relation [a.e] and A In fact, the declara-
tions of type may not be necessary at all
in the language.

We can define any number of rules for
the same defined relation, but their signa-
tures must all be consistent. When we say
consistent, we mean that oncé the signa-
ture of a defined relation has been fixed,
the signature of the defined relation in all

subsequent rules must either match exact-

ly with the original signature, or be a sub-
type of it. A n—ary signature is a subtype
of another n-ary signature if all corre-
sponding components are subtypes.

For example, the following is a rule for

the relation q 4:

let X:[a:a; eio], Z:[d:8] in
rule g 4(X, 0 4) © ql([b:=0 3], 7),
q2(X.a, [b:=0 4])

The rule reads: for all objects of type
[a:a; e:o] if there exists an object of type
[d:8] such that q1([b:=0 3], Z) and q2
(X.a,[b:=0 4]), then ¢-4(X, 0 _4).

A logic variable that appears in the
head of a rule is universally quantified
over objects in its domain. Logic variables
that occur in the body, but not in the head,
act as if existentially quantified over their

respective domains.

13

(5) Queries

Given facts and rules in the language,
queries in the language are used to find
unknown objects that satisfy one or more
relations. Logic variables are once again
used for this purpose.

By invoking a query that contains logic
variables one can solve for the variables.
The result of a query is the list of substitu-
tions for the varlables that satisfy the
query. The following is a query in the lan-

guage.

let M:[a:a], N:Bin
list M such that q3(M, N)

The above query finds the substitutions
for the logic variable M that satisfy the re-
lationship q3(M,N). The result of the

query is a list of substitutions for the

Person Course
l [Enrolls
I
Student Employee Instructs
I :
f 1 [Commi ttee
Grad_Student Faculty !
Member

Figure 3 : Conceptual model of university life

14

logic variable M. The literal q3(M,N) is
known as the goal of the query.

A query can have more than one literal.
If it has more than one literal, then all the
literals have to be satisfied for the query
to be satisfied. The system uses the known
clauses—facts and rules—to satisfy the

goals of a query.
4. An Example

In order to give a flavor of O?LLDM we
present an example taken from academic
life. Figure 3 illustrates the conceptual
model of a facet of university life. The rec-
tangles in the figure represent entity
types, the solid lines deﬁ'ote inheritance be-
tween entity types, and dotted lines repre-
sent relationships between entity types.

In the first phase of programming in the
language we specify the conceptual model.
We begin by describing the various entity

types in the domain.

type person ¢ [name: string; id: int]
type student < person and [gpa: int]
type employee & person and [dept:
string |
type faculty ¢« employee and [rank:
string]

type grad & [name: string; id. int;

gpa. int; dept: string;
adviser: faculty]

type course ¢ [dept: string; number:
int]

type committee € [name: string; dept:

string; room: int]

The entity type faculty is almost like the
entity type employee. It inherits all the at-
tributes of type employee and has
additional attribute rank. Another impor-
tant aspect of the model are the relation-
ships among entities of the previously de-
fined types. We specify the signature of
the primitive relations in the domain as fol-

lows:

signature instructs(faculty, course)
signature enrolls(student, course)

signature member(faculty, committee)

The signature of a relation is a state-
ment of the type of its participants. The
order of the participants is important. For
example, in the enrolls relation, the first
argument is of type student, and the sec-
ond argument of type course. Naturally, it
makes no sense for a committee to be en-
rolled in a course,

In the second phase of programming the
individual objects, facts and rules for a

particular instance of a domain are en-

tered. We make the following definition of

individual objects for the model of universi-

ty life,

val smith © [name := “smith”; id ;=
1361; dept ;= "chemistry”]

val john & [name := “john”; id :=
8644; gpa .= 5]

val peter & [name ;= “peter”; id .=
2865; dept := “mis”; rank ;=
“prof”]

val nancy © [name ;= “nancy”; id : =
4354; dept = “cs”; rank .=
“asst”]

val tim ¢ [name := “tim”; id .=
2454; gpa .= 6; dept .= “mis”;
adviser .= peter]

val mis600 < [dept := “mis”; numbe
r .= 600]

val cs565 © [dep’t := “cs”; number :
= 565]

val ¢s502 & [dept := “cs”; number :
= 502]

All the objects in this example happen to
be records. None of them have functional
components. However, O’LDM does allow
records to possess functional components.

Relationships between objects are speci-
fied by asserting facts, For our example,

we assert the following facts:

15

fact instructs (peter, mis600)
fact instructs (nancy, ¢s565)
fact instructs (nancy, ¢sb02)
fact enrolls (john, ¢s565)
fact enrolls (john, cs502)
fact enrolls (tim, mis600)

fact enrolls (tim, cs565)

A rule defines a new relation in terms
of existing relations. For instance, to ex-
press the following statement: “A faculty
teaches a student if the student is enrolled
in a course that the faculty member in-

structs.” we define the rule:

let F: faculty; S: student; C: course in
rule teaches (F, S) & instructs (F, C),
enrolls (S, C)

The signature of teaches is the binary
relation of type faculty and student.

Finally in the third phase the user en-
gages in an interactive dialogue. The user
gives a query and the system responds
with all the solutions. For example, the
query to find all the students who are
taught by the faculty member nancy is

stated as follows:

let S : student in

list S such that teaches (nancy, S)

The system responds with a hst of the

16

students taught by the faculty nancy-the
student john and the graduate student tim;
The graduate student tim appears in the
response because due to the fact that a
graduate student is also a student. Now, if
we wanted only the graduate students who

are taught by nancy, we would write:

let GS : grad in
list GS such that teaches(nancy, GS)

Here are two additional queries that il-
lustrate some of the convenience of O?

LDM.
The query

let S—student in
list Sname such that teaches(tim.

adviser, S)

finds the names of all the students who
are taught by tim’'s adviser. We use field
selection to denote tim’s adviser. The

query

let F : faculty; GS : grad in
list GS.name such that teaches(F,
GS), F.rank="“asst”

finds the names of all the graduate stu-
dents who are taught by assistant profes-

SOrs.

5. Comparison with PROLOG

In PROLOG [Clocksin 1984] the argu-
ments to a relation can be atoms, varia-
bles, or terms made up of uninterpreted
function symbols called functors. These
functors behave as instantiated, partially
instantiated, or uninstantiated record
structures. This is a remarkably useful
data structure considering its simplicity.

However, it is not ideal. The lack of type
checking permits any structure to appear
regardless of the relation. Furthermore,
some natural notions are not easily ex-
pressed in this framework. We examine
this issue in the context of the conceptual
model for university life,

The PROLOG representation of the

facts and rules in the university example is

shown below:

instructs(faculty (peter, 2865, mis, prof),
course(mis,600)). ;

instructs(faculty(nancy, 4354, cs, asst),
course(cs,565)).

instructs(faculty(nancy, 4354, cs, asst),

course(cs,502)).

enrolls(student(john, 8644, 5), course
(cs,565)). ,

enrolls(student(john, 8644, 5), course
(cs,502)).

enrolls(grad(tim, 2454, 6, mis,

faculty(peter, 2865, mis, prof)), course
{(mis,600)).
enrolls(grad(tim, 2454, 6, mis,

faculty(peter, 2865, mis, prof)), course
(cs,565)).

teaches(F, S) ; — instructs(F, C), en-
rolls(S, C).

The query to determine all the students
who are taught by the faculty member

nancy is stated as follows:
? —teaches(faculty(nancy, —, —, —), S).

PROLOG finds the solutions to this query,

namely:

student(john, 8644, 5)
student(john, 8644, 5)
grad(tim, 24548, 6, mis,

faculty (peter, 2865, mis, prof))

We run into difficulty when we try to
formulate the query to find the names of
all the students (including graduate stu-

dents) who are taught by nancy. The

query.

?_

teaches(faculty(nancy, —, —, —), student
(X9 Ty _))-

fails to find the names of the graduate stu-

17

dents. The problem arises because we have
not captured the inheritance relation be-
tween graduate students and students.
Taking mspiration from Zaniolo, we could
introduce some new predicates that assert

the “type” of the structures, as in:
is_student(student(NAME, ID, GPA)).

Then we could add rules to model the in-

heritance relation, as in:

; is_student(student(NAME, ID, GPA)): —

1s_grad(grad(NAME, ID, GPA, —, —)).

which states that “every graduate stu-
dent is a student”. But alone, this does not
solve the problem, because we must still in-
ject this inheritance relation into every re-
lation. The following rule, however, does

the trick:

enrolls(student(NAME, ID, GPA),C): ~
enrolls(grad{NAME, ID, GPA, —, —), C).

The appropriate fields are dropped from.
grad to form the term for a student. How-
ever, the inheritance must be expressed
this way for every relation. This is a prob-
lem when new relations are introduced.
Furthermore, A “it-Kaci and Nasr ob-
served that inheritance captured in this

manner, l.e., through the use of logical im-

18

plication, leads to a lengthening of proofs.
They proposed a simple and efficient solu-
tion to the problem in the language LOGIN
[Ait-Kaci].

The query to determine the names of all
the graduate students who are taught by

their adviser can be expressed as follows:

?-teaches(F, grad(NAME, —, —, —,
~, F))

But we run into difficulty in trying to
determine the names of the graduate stu-
dents who are taught by tim’s adviser. To
understand the difficulty, consider the fol-

lowing query .

?-teaches(F, grad(NAME, —, —, —,
-, =)

In the above query we need to bind the
variable F to tim’s adviser. To do this we
need to determine some goal in which tim
participates, .and which we know will
always be true. Since we know that tim is
enrolled in a course, we could do the fol-

lowing:

?—-enrolls(grad(tim, —, —, —, —, F),
teaches(F, grad(NAME, —, —, —, —, —))

The above solution works because we
know that there is a fact in which tim par-

ticipates. But, this may not necessarily be

true. The important point here is that the
lack of expressions forces us to resort to
obscure means to formulate the query.
This is a fundamental limitation of PRO-
LOG, one that has been overcome in O
LDM.

. Resolution in the presence
of Subtyping

Here we concentrate on the aspects con-
cerning the modification of the resolution
algorithm required to handle expressions
and subtypes. The prototype implementa-
tion of O’LDM is written in ML[Milner
1990].

1. The Type-Object Lattice

In O*LDM, the set of all types when or-
dered by the subtype relation forms a par-
tial order. The partial order can be repre-
sented graphically as a lattice. We usually
i‘epresent some finite portion of the sub-
type relation by a Hasse diagram.

A Hasse diagram is a graph structure
whose nodes represent the type elements
and whose edges are directed downward,
from node r to node 7 if 7 is covered by 7.
A type 7 is covered by type r, or 7 covers
7, if 7 < r and there is no type y such thét
7 < 7 < r. The symbols {and) are used to

19

ToP

[a: int]

[b: string]

[c:bool]

I]
1]

[a: int; b: string]

I

.

[a: int; b: string; ¢: bool]

l_I

BOTTOM

Figure 5 : Type Lattice

represent the relations covered and cover,
respectively.

Figure 5 is a Hasse diagram of a sample
portion of the type lattice. In Figure 5, [a:
bool] {[c: bool], be-

cause there is no type element y in the lat-

int; b: string, c:
tice such that [a: int; b: string; c: bool]
<y < [e: bool].

Given two types r and in the lattice, the
meet of 7 and o is the highest node in the
type lattice 7 for which there is a path
downward to 7 from both 7 and o. For ex-
ample, in Figure 5, the meet of [a: int]
and [b: string] is the type [a: int; b:
string]. Similarly we can define the dual

notion. The join of 7 and ¢ is the lowest

node in the type lattice ¥, for which there
is a path downward from y to both r and o.

At the start of an interactive program-
ming session in O’LDM the universe of
known objects is empty. The universe is
filled with objects that are encountered
when the user enters knowledge about a
particular instance of the problem domain.
As expressions are encountered they are
evaluated and the resulting objects are
added to the universe each according to its
type. For example, when the user enters

the following fact:
fact p(o 3,[a :=o01])

the expressions o 3 and [a := o_1] are

20

evaluated and three new objects are added
to the universe—the object o_3, the object
[a := o 1] and its subobject o _1.

The universe of objects determines the

objects that can be bound to a logic varia-
ble used in a query. We call the data struc-
ture that is used to maintain the universe
of objects the type—object lattice, The ML
data typés for the type-object lattice are
given below. The type—object lattice for 0?
LDM is represenied by the ML object
TypeLattice. It imtially contains only the
single type Top.
(% %k %k %k %k %k sk %k ok ok %k %k ok ok ok k ok ok
LATTICE NODE=Type % Mark % Exprs %
Subnodes

******************)

datatype LATTICE=

Lattice of TYPE #* (bool ref) x*
(EXPR Set

ref) * (LATTICE ref Set ref);

type Subnodes=LATTICE ref Set;

(% sk %k sk ook ok sk %k %k k ok ok ok ok ok ok ok ok
Initiahize the LATTICE
by creating the Top Node.

%k %k %k k % %k %k k %k %k %k %k %k %k %k *k k k)

val TypeLattice=

[ref (Lattice (Top, ref false, ref
ErﬁptySet,
ref EmptySet))];

Algorithms for determining the exis-
tence of a type, adding a non-existent
type, adding an object, and finding all ob-
jects of a type are ommitted because of

the limited space.
2. Resolution

In O?LDM, resolution is the rule of infer-
ence that is used to solve queries. The spe-
cific resolution strategy that is used in the
language is a forzﬁ of linear input
resolution. This is the same strategy used
by PROLOG. (See [Clocksin 1984, Gallier
1986] for more details about resolution
theorem proving.)

The facts and rules that are entered into
the O’LDM system are the known clauses
of the problem doméin. A query in the lan-
guage consists of a conjunction of goals to
be satisfied. We start with the leftmost
goal in the query and resolve it with one of
the known clauses in the system to gener-
ate a new conjunction of goals. Then we
resolve the leftmost goal of thé new con-

junction of goals to obtain another con-

. junction of goals, and so on. We continue

this process until we are left with no more
goals to be resoclved, or until there are no
clauses In the system that can be resolved
with the chosen goal. If we are left with no
more goals to be resolved then the query is
satisfied, otherwise we have failed.

At each step, the clause that is chosen
for resolution with the goal must satisfy
the matching criteria—the head of the
clause must match the goal under consider-
ation. Once resolved, the goal is removed
from the conjunction of goals and in its
place the subgoals that make hp the body
of the matched clause are inserted. In
other words, the subgoals that make up
the body of the clause are appended to the
front of the conjunction of subgoals. This
means that O*LDM finishes satisfying the
newly added subgoals before it goes on to
try something else.

If there is more than one clause that sat-
isfies the matching criteria, O°’LDM consid-
ers one alternative at a time, fully explor-
ing the alternative under the assumption
that the choice is correct. The other
alternatives are considered only after the
chosen alternative has been fully explored.
The clauses are considered in the order in

which they are entered into the system.

21

3. Semantic Unification

It is the algorithm of matching literals
that makes O*LDM unique. We call the
matching of two literals semantic unifica-
tion. The result of semantic unification is a
list of substitutions, not just a single substi-
tution as usual in unification. Each substi-
tution when applied to the two literals
make them semantically equivalent.

The unification mechanism is different
from PROLOG, where unification is strict-
ly a syntactic process. The result of unify-
ing two terms in PROLOG is a single sub-
stitution, not a list of substitutions. The
resulting substitution, when applied to the
two terms, makes them syntactically iden-
tical. For example, syntactic unification
can unify the two terms +(3, X) and +
(3,5), but not the terms +(3,X) and + (2,
6) even though we know that if X were
bound to 5 the two expressions would be
semantically equivalent.

A substitution is a finite list of the form
{(v 1,7 1)=e 1, - , (v.n, 7 n)=e n},
where each element (v i, ri)=eli is a
binding of a logic variable named v_i, of
type r_1, to an expression e_i. For a given
substitution, the logic variables in the sub-

stitution are distinct. The e 1's in the bind-

22

ings are restricted to ground expressions
and logic variables. For the sake of brevi-
ty, the type of the logic variable will be
omitted from the substitution in some con-
texts.

Based on the form of the expressions p
and q, the semantic unification algorithm

is divided into the following four cases:

— pand ¢ are both logic variables.

— pis a logic variable, but ¢ is any ex-
pression other than a logic variable.

— g is a logic variable, but p is any ex-
pression other than a logic variable.

— Both p and ¢ are expressions, but nei-

ther is a logic variable.

Next we describe the individual cases in

detail.

Casel:

lLet pbea logié variable (p v, r), where
p v is the name of the variable and r its
type, and ¢ a logic variable (¢ v, ¢), wheré
g v is the name and the type.

If both p and g are of the same type, i.e.,
r=o0, then any object from the domain of

the logic variable p (which is also the do-

main of ¢) can be bound to both variables

making them semantically equivalent. The
substitution that would make p and ¢ se-

mantically equivalent is one that contains

the binding (p v, r)=(g v, 0). Thus the
new substitution, S n, is obtained by
adding this new binding to the current sub-
stitution, S.

If 70, then the only objects that can be
bound to both variables are objects from
the intersecting domain. The intersecting
domain is all the objects in the type-object
lattiée of type 8, where 0 is the meet of ¢
and ¢. The new substitution S n is ob-
tained by adding to the current substitu-
tion S, the bindings (» v, r)=(g v, §) and
(q v, 0)=(é_v, ¢). The reason for includ-
ing the binding (¢ v, 6)=(g v, §) 1s be-
cause the type of the logic variable ¢ has
been constrained to a subtype of its origi-
nal type, as a result of unifying p and q. If
d=DBottom, then unification fails, because
there are no objects of type Bottom in the

lattice.

Case 2:

In this case p is a logic variable and ¢ is
not. Let p be the logic variable (p v, r).
The expression ¢ may contain free logic
variables. Let F represent the set of free
variables in ¢g. There are two potential
cases to be considered. k

In the first case, F=§, i.e., ¢ has no free
variables. For p and ¢ to be unifiable the

type of ¢ must be a subtype of the logic

variable p. The new substitution, S n, is
obtained by adding the binding (p v, r)=¢
to the current substitution S. The result of
semantic unification in this case is a single
substitution.

Next, we consider the case when F =0,
Le., ¢ contains free variables. Since a free
variable is a variable that is not bound to
anything in S, it can be instantiated to any
object from its domain. The domain of a
free variable is all the objects in the type—
object lattice of type r, where 7 is the type
of the free variable.

For p and q to be unifiable: (1) the free
variables in ¢ must be bound to objects
from their respective domains and (2) the
type of object o must be a subtype of the
type of the logic variable p, where o is the
result of evaluating the expression g after
all its free variables have been instantiat-
ed. The new substitution is obtained by
adding the binding (p v, r)=o0to Sand S_
f, where S is the current substitution, and
S_f the binding of free variables to objects.

There is a list of these new substitutions
that make p and ¢ unifiable—potentially as
many as all possible combinations of free
variable—object bindings. For example, let
us assume that the expression q contains
two free variables—U and V. Let the do-

main of U contain the objects 0 1 and o_2,

23

and the domain of V the objects 0 3 and o
4, The possible combinations of free varia-
ble—object bindings are: {U=0 1, V=0 3},
{U=o0_1, V=0 4}, {U=02, V=0_3}, {U
=0 2, V=0 4}.

Let F be the free variable set

{(v1,z1), - , (V4,7 1), e , (v_n,

rn)}

where each (v i, r 1) is a free variable, v 1
the name of the free variable and r i its
type. Let the domain of the free variables

be represented by D(z i) for all i€l, .-

-, n
LetS j={(v 1,z 1)=01, - , (vt
n)=o n}

where o 1 € D(7 1), «+-+ ,on € D(r_n)

represent the substitution obtained by bind-
ing the free variables to objects from their
respective domains. We can obtain a list of
such substitutions—one for each combina-
tion of free variable-object bindings. The
list of such substitutions will be denoted by
S 1. From S | we determine the new sub-
stitution list as follows.

Let S jbe an element of S 1, and o_j the
object that results from evaluating the ex-
pression q using the substitution S_j. Let I
be a function that, given S—j, returns the

pair (0 J,S j). Let G e a function that re-

24

turns true if the type of o j is a subtype of
the type of the logic variable p, otherwise
it returns false. Let H be a function that,
given the pair (o_jS J), returns the substi-
tution obtained by adding the binding (p v,
r)=o0 jto S and S _j, where S is the cur-
- rent substitution. The list of new substitu-

tions is obtained by:
(map H) o (filter G) o (mapF) S 1

where o denotes the composition of func-
tions, map and filter represent the higher—

order functions with their usual meaning.

Case 3.

This case is similar to case 2.

Case 4.

In this case neither p nor ¢ is a logic var-
iable. Both expressions, p and g, may con-
tain free variables. Let F p represent the
free variables in p, and F ¢ the free varia-
bles in q. Let F represent (F_p U F—q).

Let us first consider the case when F=@
, 1.e., both p and g have no free variables.
For p and g to be unifiable the two expres-
sions p and ¢ must be identical. The new
substitution, S_n, is identical to the current
substitution S. Since there are no free vari-
ables in p and ¢, no new bindings are

formed.

Next we consider the case when F={, i.
e., either p or g, or both contain free varia-
bles. Since a free variable is a variable
that is not bound to anything in S, it can
be instantiated to any object from its do-
main. For p and ¢ to be unifiable: (1) the
free variables in p and ¢ must be bound to
objects from their respective domains (2)
the objects o p and o_g must be identical,
where o p and o g are the objects that
result from evaluating p and ¢
respectively, after all theixj free variables
have been instantiated. The new substitu-
tion is S and S f, where S is the current
substitution, and S f the binding of free
variables to objects.

There is a list of these new substitutions
that make p and ¢ unifiable-potentially as
many as all possible combinations of free
variable-object bindings. To determine this
list of new substitutions, we need S 1, the
list of all possible combinations of free var-
iable-object bindings. From S | we deter-
mine the new substitution list as follows.

Let S j be an element of S], and oip
and oAj_q the objects that result from eval-
uating the expressions p and 3
respectively, using the substitution S _j. Let
F be a function that, given S_j, returns the
triple (03 p, 0'j.q, S_j). Let G be a func-

tion that returns true if the objects o’j p

and oAj_q are identical, otherwise it returns
false. Let H be a function that, given the
triple (0] D, oAj_q, S j), returns the substi-
tution S and S), where S is the current
substitution. The list of new substitutions

is obtained by:
(map H) o (filter G) o (map F) S 1

This completes the description of the al-

gorithm.
4, EXamples

We look at two examples to illustrate
the deductive process using semantic unifi-
cation. The first example shows the impor-
tance of the semantic unification, the sec-
-ond example shows the importance of
subtyping.

(1) An example of semantic unification

In this example we trace through the ex-
ecution of the query q 4 (M,N). The uni-
verse of objects is shown in Figure 6. The
rules and facts of the example are shown
in Figure 7 along with the entire search
space of the query in Figure 8. In the
search space any path from the original
goal to a box with the caption “success”
represents a solution. Ultimately, the query
vields two substitutions for the variables

M and N as solutions. These two solutions

25
are.

{M=[a:=0_1],N=o0 3}
{(M=[a:=o0 2], N=o 3}

The way O°LDM finds these solutions is
as follows, O°LDM searches through the
list of clauses and finds that the goal q 4
(M, N) unifies the head of the forth
clause, q 4(P, Q.b). The result of unifying
the two literals, g 4(M, N) and q 4(P, Q.
b), is two substitutions. O’LLDM determines
the two substitutions as follows.

For the literals, g 4(M, N) and q 4(P,
Q.b), to match their predicates must be
identical and their respective arguments
must match, i.e., they must be semantically
{M=P}

makes the first arguments, M and P, se-

equivalent. The substitution
mantically equivalent. Since Q is not
bound to anything in the current substitu-
tlon, {M=P}, we need to find objects in
the domain of Q that when bound to @ will
render the two expressions Q.b and N se-
mantically equivalent.

What is the domain of the logic variable
Q? What objects can Q be bound to? Clear-
ly, if we are to consider a universe of all
possible values, including all integers,
strings, records, etc., we could have an in-
finite number of objects of type [b:4], and

thus an infinite number of substitutions

26

TOP

1 | | 1 l
a B d [aia] [b:B) [c:3]

o o 03 on 05 [acor] [ai=os] [bios] [bi=od) [d:=os]

Figure 6 : Universe of objects

signature q.1([b:B1,[d:3])
signature q 2(«, [b:p])

fact q_1([b:=0_33,[d:=0.5])
fact q_2{o_1, [b:=0_31)
fact q_2(0_2, [b:=0_31)

let P:[a:al,Q: [b:B] in
rule g 4(P, Q.b)
<=> g.1(Q, [d:=0.5]), q.2(P.a, Q)

Figure 7 : O%.DM program

let M:[a:a), N:B in list M. N such that g_4(M, N)

Unify with Clause 4

| . 1
q_1{[b:=0_4], [d:=0_5]), q_1([b:=0_3],[d:=0_5]),
q_2(P.a, (b:=0_4]) q_2(P.a, [bi=0.3])
{M=P, Q=[b:=0_4], N=o_4} {M=P, Q=[b:=0_3], N=0_3}
Unify with Clause 1 Unify with Clause 1
Fail ' q.2(P.a, [bi=0_3])
| {M=P, Q=[b:=0_3], N=0_3}
Unify with Clause 2 Unify with Clause 3
Success Success

{M=P,Q=[b:=0_3],N=0_3,P={a:=0_1]} {M=P,Q=[b:=0_3],N=0_3,P=[{a:=0_2]}

Figure 8 : OLDM query and search space

that make N and Q.b semantically equiva-
lent. But, in O’LLDM, the universe consists
of only the objects that have been intro-
duced to the system by a particular point
in time.

There are two objects in the domain of
Q. These are the two objects of type [b:A].
Each object when bound to Q makes the
two expressions Qb and N semantically
equivalent. The corresponding binding to N
will be the field component labeled b of the
object that is bound to Q. The result of uni-
fying q 4(M, N) and q 4(P, Q.b) is the

following two substitutions:

{(M=P, Q=[b:=0 3], N=0 3}
{M=P, Q=[b:=0 4], N=0 4}

We can choose either of the two substi-
tutions for the next step. If we reach a
dead end by choosing one, we can pursue
the other. As a result of unification we
have a fan—out (branching) in the search
space of Figure 7. The degree of the fan-
out is the number of substitutions re-
turned. The result of a successful unifica-
tion in PROLOG is a single substitution.

Let us choose the substitution:
{(M=P, Q=[b:=0 4], N=0 4}

for the next step. The goal q 4(M, N) is
replaced by the body of clause 4, and ap-

217

propriate substitutions are made, ylelding
the following:
ql([b:=0 4], [d:=05]), q2(P.a, [b:
=0 4])

Next we try matching the goal q1([b:=
o 4], [d:=o0 5]). The goal does not umfy
with the head of any of the clauses in our
list of clauses. It does not match with first
clause, because {b:=o0 3] and [b:=o0 4]
are two different objects and hence are
not semantically equivalent. We have
reached a dead end. In the search space,
boxes with the caption “fail” denote fail-
ures that result because one or more of the
arguments of the literals did not match,
even though the predicates matched.

We backtrack and pursue the other sub-

stitution:
{M=P,Q=[b:=0 3], N=o0 3}

The goal q 4(M,N) is replaced by the
body of clause 4 and appropriate substitu-

tions are made yielding:

al([b:=0 3], [d:=05]), q2(P.a, [b:
=0_3])}

The goal q1([b:=0 3], [di=0 5]) suc-
cessfully unifies with the head of the first
clause. No new bindings are introduced.

As a result the substitution remains the

28

same. Notice that the degree of fan—out in
the search space at this point is one. Since
the body of the first clause is empty, our

new goal is;
q2(P.a, [b:=0_3])

We try matching the goal q2(P.a, (b:=

o_31]), with the head of the second clause,

q2(o_1, [b:=0_3]). Since P is not bound

to anything in the current substitution, we
need to find objects in the domain of P
that when bound to P will render the two
expression P.a and o_1 semantically equiv-
alent. There are two objects in the domain
of P—the two objects i the universe of
type [a.a]. Of the two objects only the ob-
ject [a:=o0_1]} when bound to P makes the
two expressions P.a and o_1 semantically
equivalent. We end up with the following

substitution:

{M=P, Q=[b:=0 3], N=0 3,P=[a:=

o 11}

Since the body of the second clause is
empty we are left with no more goals. An
empty list of goals indicates success, The

substitution for M and N that makes q 4
(M, N) true is:

{M=[a:=0_1], N=0o 3}

The other solution can be found by back-

tracking.

(2) An example of semantic unification
with subtyping

We extend the example of the previous
section to illustrate inheritance. Consider
the universe shown in Figure 9 and the
search space in Figure 10. We trace
through the execution of the query q_4(M,
N). Note that the logic variable M is not of
type [a:a], but a subtype of it. The type
of M'is [a i@ ; e .0]. The entire search
space of the query q_4(M, N) is shown in
Figure 10. The query yields only one sub-

stitution for M and N as solution.
{M=[a :=01;e:=06], N=o0_3}

O’LLDM finds the above solution as follows.
The goal g 4(M, N) unifies with the head
of the fourth clause g 4(P, Q.b) yielding

the following substitutions:

{M[a:a ; e:o]=Pla:a ;e.o],
Pla:a]=Pla:a ;e.c],
Q=[b:=0 3], N=0_3} ;
{Mla:a ;e.c]=P[a:a ;e:o],
Pla:e]=Pla:a ;e.0],
Q=[b:=o0 4], N=0 4}

It is important to compare the above
substitutions with their counterparts in the

previous example. Notice that besides type

TOP

[| | | '] |
a i 3 o [a:a] [b:B] [c=8]
o o 0aon o5 o8 [;‘f;;{i """" [a: =02] (b ou] (b 0u] [d:=os]
[ata: e:0]

[a:=o01: §e::oﬁ]

Figure 9 : Expanded Universe of objects

let M:[a:d;e:0], N:B in list M, N such that g 4(M, N)

Unify with Clause 4
I |

q_1([b:=0_4], [d:=0_5]), q_1([b:=0_3], [d:=0_5]),

q.2(P.a, {b:=o0_4]) 2(P a, [bi=0_31)

{M[a:d:e:0] = Pla:die:q], {M[a:a: e:0)} = Pla:aie:q]
Pla:a] = Pla:dieio], Pla:a] = Pla:die: 0],
Q=1(b:=o0_4], N = o_4} Q=1{b:=0.23], N=o023}

Unify with Clause 1 Unify with Clause 1
Fail | a2(P.a, [bi=0_3])
{M[a:d: e:0] = Pla:aie:0]
P[a:a] = Pla:a:e:0],
Q=1[b:=0.3], N=o0.3)}
Unify with Clause 2 Unify with Clause 3
Success Fail

{M[a:d: e:g} = Pla:aie:0q],
Pla:a] = Pla:a:e:0],
Q=1[b:=0.23], N=o_3,
Pla:aie:0]l=[a:=o_1,e:=0_6]}

Figure 10 : O*LDM query and search space

30

information there is also an additional
binding in each of the above substitutions.
The additional binding is Pla:a]=Pla:a ;
e:0). The reason for this additional bind-
ing is that since the logic variable M is of
type [aia@ ;eio], unifying M and P has
constrained P to a subtype of its original
fype. The type of P for all future referenc-
esis [a:a ;eic].

As before we can pursue either substitu-
tion for the next step. If we choose the sec-
ond substitution, replace the goal q 4(M,
N) by the body of clause 4, and make the
appropriate substitutions we end up with

the following:

{ql([b:=0_4], [d:=05]), q2(P.a, [b:
=0 4D}

Next, we try matching ql([b:=o0 4],
[d: =0 5]). This goal does not unify with

the head of any of the clauses in the list of

clauses. We have reached a dead end, so
we backtrack and pursue the other substi-

tution:

{M[a:a ; e:c]=Pla:a ; eio],
Pla:a]=Pla:a; eic],
Q=[b:=0_3], N=0_3}

and obtain the following goals:

ql([b:=o0_3], [d:=0_5]), q2(P.a, [b:

=0_3])

This time the goal q1([b: =0 3], [d:=0_
5]) matches with the head of the first
clause. No new ’bindings are introduced as
a result of the match, and since the body is

empty we are left with:
q2(P.a, [b:=0_3])

as the next goal. We try to match q2(P.a,
[b: ——40,3]), with the head of the second
clause q2(o_1, [b:=o0_3]). Since P is not
bound to anything in the current substitu-
tion, we need to find objects in the domain
of P that when bound to P will render the
two expressions P.a and o 1 semantically
equivalent. The type of P is [a:a ; eio),
not [a:a]. There is only one object in the
universe of type [a:a ; e:o]. The object
when bound to P makes the expressions P.
a and o 1 semantically equivalent. The

new substitution is.

{M[a:a ;e:g]=P[a:a ;eiq],
Pla:a]=Pla:a je:c],
Q=[b:=0_3], N=0_3,
P={a:=0_1; el=0 6]}

We are then left with no more goals,
The substitution for M and N that makes q_
4(M,N) true is:

{M=[a:=01; e.;=0 6], N=0_3}

[V. Conclusion

The primary objective of this research

was to develop a programming language
_in which knowledge about a domain can be
safely and concisely expressed. Domain
knowledge has many forms, and in order
to express these diverse forms of knowl-
edge, we need a multiparadigm language.
Some forms of knowledge can be stated
more naturally and concisely in one para-
digm than In another.

Several other researchers have also ar-
gued for the need to integrate the para-
digms and numerous multiparadigm envi-
ronments were built. We do not embed one
or more paradigms on top of another. In-
stead we identify the primitive language
features that are necessary for represent-
ing knowledge about a domain and then in-
troduce these features in a new language.
We were interested in studying the seman-
tics of combining the paradigms.

We are also convinced that compile—time
type checking is an important language de-
sign goal. We feel that support for a para-
digm in a language comes not only in the
obvious form of language primitives that
allow programming in the paradigm, but

also in the more subtle form of type check-

31

ing to ensure that unintentional deviations
are detected early.

O’LDM provides powerful primitives for’
representing domain knowledge —domain
objects and their attributes, the taxonomic
arrangement of domain objects, the associ-
ation of one or more objects in a relation-
ship, and rules for making decisions. But
more importantly it provides a reasonably
coherent semantics of the combination of
these primitives.

The focus of the development of O*LLDM
has been in its deductive process, not in de-
veloping it into a practical language. Some
of the possible directions in which the lan-
guage can be extended are outlined below.

1) The incorporation of type construc-
tors such as cartesian products, lists, etc.,
would make the language more convenient
to program in. The results of queries,
namely lists, could be treated as objects in
O?’LDM.

2) The use of lazy lists could be used as
the appropriate data structure to manage
queries with an infinite number of solu-
tions.

3) Imperative features are needed in
the language to model! state transforma-
tion in the domain. We need operators for
changing the set of clauses in the knowl-

edge base and a type-object lattice that

32

could change during query.

4) Another extension would be a de-
fatﬂt mechanism capability. Presently
there are no mechanisms for objects to in-

herit default values when they are created.

5) Domain objects and relationships

(1] A" it-Kaci, H. and Nasr, R. “LOGIN: A
Logic Programming Language with built-in In-
heritance,” Journal of Logic Programming, No. 3,
pp. 185-215, 1986.

[2] Albano, A., Cardelli, L. and Orsini, R. “Gali-
leo: A Strongly-Typed, Interactive Programm‘ing
Language,” ACM Transactions on Database
Systems, Vol. 10, No. 2, pp. 230-260, June 1985.

{31 Atkinson, M.P. and Buneman, O.P. “Types
and persistence in database programming lan-
guages.” ACM Compuing Surveys, Vol. 19, No. 2,
pp. 105-190, June 1987.

[4] Bobrow, D.G. and Stefik, M. The LOOPS
Manual, Xerox PARC, 1983. ‘

[5] Bobrow, D.G. “If Prolog is the answer, what
1s the question? Or what it takes to support Al

programming paradigms,” IEEE Trans. on Soft-

should be persistent. This would support
the use of O*LDM as a database language.

6) Another possibility would be to add
transaction management, moving O’L.LDM

in the direction of Galileo.

ware Eng.,, Vol. SE-11, No. 11, pp. 1401-1408,
November 1985.

[67 Borgida, A. “Features of languages for the
development of information systems at the con-
ceptual level,” IEEE Software; Vol.2, No. 1, pp. 63
-72, January 1985.

(77 Cardelli, L. “A semantics of multiple inheri-
tance,” Information and Computation, Vol. 76, pp;
138-164, 1988. ' '

[8] Clocksin, W.F. and Mellish, C.S. Program-
ming in Prolog. Berlin: Springer-Verlag, 1984.

[9] Fikes, R. and Kehler, T. “The role of frame—
based fepresentation in reasoning,” Communica-
tions of ACM, Vol. 28, No. 9, pp. 904-920, Sep-
tember 1985.

[10] Gallier, J.H. Logzc for Computer Science.

Foundations of Automatic Theorem Proving, New

York: Harper & Row, 1986.

{117 Goguen, J.A. and Meseguer, J. “Unifying
functional, object—oriented and relational pro-
gramming with logical semantics,” Research Di-
rections in Object—oriented Programming, edited by
P. Wegner and B. D. Shriver. Cambridge, MA:
MIT Press, pp. 417-477, 1987.

[127 Goldberg, A. and Robson, D. Smalltalk-80:
The Language and its Implementation. Reading:
Addison-Wesley, 1983.

{137 Gullichsen, E. BiggerTalk: Object—Oriented
PROLOG, Technical Report STP-125-85, MCC
Software Technology Program, Austin, Texas,
1985.

[147 Kifer, M. and Lausen, G. “F-lLogic: A
Higher-Order Language for Reasoning about Ob-
jects, Inheritance, and Scheme,” Proceedings of

the ACM SIGMOD Conference, pp. 134-146, 1989,

[15] Milner, R., Tofte, M. and Harper, R. The

33

Definition of Standard ML. Cambridge, MA: MIT
Press, 1990.

{167 Ohori, A., Buneman, P. and Breazu-
Tannen, V. “Database programming in Machia-
velli-A polymorphic language with static type in-
ference,” Proceedings of the ACM SIGMOD Con-
ference, pp. 46-57, 1989.

[177 Ohori, A. and Buneman, P. “Static type in-
ference for parametric classes,” Object-oriented
Programming. Systems, Languaeges and Applice-
tions, edited by Norman Meyrowitz. New York:

ACM, 1989.

{187 Stansifer, R., Jung, C., Whinston, A. and
Bhasker, P. Description of SEMLOG. CSD-TR~
868, Department of Computer Sciences, Purdue

University.

[19] Zaniolo, C. “Object-Oriented Programming
in PROLOG,” Proceedings of the 1984 IEEE Sym-
posium on Logic Programming, pp. 265-270, 1984.

34

& AR &

Az A 8- A AR AGeH 2af2 AFFolth 2 AU BA
a}z}oll A} 8HA} 89, B3 University of Washington®] Z gt stol A g8t A} 89, a
2] University of Texas at Austind]X) #4428} 8lA}8t9) & @t} University of
Texas at AustinollM ZAL= 7‘“7—‘]5}9&9-'31 FTFEATY FAFIL & Ik F
£ ATRokE QFAF Y dojeho)x AAglde) SEoln, At FAFHRAALH T
FEARAILY BE AFA & FRFoI

