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Abstract

In many applications of signal processing, we have to deal with densities which are highly non-Gaussian or which
may have Gaussian shape in the middle but have potent deviations in the tarls. To fight against these deviations, we
consider a finite mixture distribution for the speech excitation. We utilize the EM algorithm for the estimation of
speech parameters and their enhancement. Robust Kalman filtering is used in the enhancement process, and a detec.
tionfestimation technique is used for parameter estimation. Experimental results show that the proposed algorithm

performs better in adverse SNR input conditions.
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I. Introduction

Background noise seriously degrades the per-
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formance of speech signal processing systems,
This is primarily because most systems are based
upon the data obtained in a noise-free environment,
In general there two ways to improve the per-
formance of speech recognition/coding system
subjected to noise. One is preprocessing that
removes at the front end the noise in the speech
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signal, This enjoys the advantage that there need
be ne modification to the existing system structure,
This technique aims to remove the nowe in the
speech signat, to make the preprocessed signal as
close as pessible to the onginal signal, salhes
than improve the quality of the speech signal
{1. 2). The other method is speech quality enhance-
ment for listeners. This processes the speech signal
with an emphasis to enhance the acoustical quality
of the signal, rather than the signal itself. This
method can be used under various noise conditions.
Proposed by Lim el af. in 1978, it is a speech
enhancement method based on glottal model par-
ameter estimation assumming an all-pole model in
white Gaussian noise environment {3]. And a con-
strained iterative speech enhancement method was
proposed which enhances speech using the maximum
2 posteriori techmque in order to estimate the
speech parameters from the signal corrupted by
noise [4]. Ephraim proposed a mdden Markov
model with mixed Gaussian outputs based on
statistical modeling!5, 6.

Conventional methods assume the following :
The speech source assumes that pitch-periodic
impulse train is used for voiced speech, and a
white Gaussian noise for unvoiced speech. The
least square method that is used in the analysis
step employs the assuraption that the input signal
1s Gaussian. Hence the pitch period affects the
parameters during voiced signal analysis. The
second assumption is that the characteristics of
the degrading noise is known 2 privri. Since this
assumption is not very realistic, conventional
methods inevitably suffer. In order to develop an
estimation method, not affected by the sound
source, for obtaining parameters from speech
signal ontaining unknows noise, a robust speech
enhancement algorithm using the EM{estimate-
maxirmize ) algorithm is proposed.

The proposed algorithm may be divided into
the M-step and the E-step. The M-step is again
divided into the estimation procedure that computes
the glottal model parameters and their variances,

and a4 detection procedure for voiced signals
which abtainz the positions of the pulse train cor
respanding to rthe cpeech cowot. The B oate
cinploys 4 robust Kalman titer that enhances
paiaflreiels from corruptea speech signal. These
two steps are iterated in turn to produce the

speech parameter estimates.
II. Proposed Model

In general, the speech signal s{f} can be modeled
as the output from an all-pole filter with input 2(Z) :
sty=aTs(t~1)Fult), t=1, 2,....N, (n
where a== Lo -+ x,)7, s{t=1) =[s(—1) - sl¢
—p))t, pis the filter order, and X is the frame
length. The input signalli.e. excitation} #(t) is
assumed to be non-Gaussian with a mixture distri-
hution for voiced speech. A large part of the
excitations comes from a normal distribution with
a very small variance, while a small share of the
excitations come from one with a much larger
variance, This distribution is an example of heavy-
tatled non-Gaussian distribution {6, 7]. The prob-
ability density function of this distribution may

be expressed as
P, ={1-0N(0, o) +2a5(0, 63). (2)

where ¢3 » 63 and A {0 < A < 1) is the probability
for N(Q. ¢3). The input signal 1s then modeled as

#(8) = (1—g{ (1Y + q()ule), (3}

where ¢{#) s an Li1d. (independent, identically
distributed) random variable sequence, and #,(¢)
and #,{¢) are mutually independent, #,{¢) and w«,(#)
have zero-mean, and respectively have variances
of and ¢f. The random variable g{¢) assumes the
following probability distribution
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Dttt xoglt)—1,
r: o 2
S | 1-a qlt) =0, t4

The covariance of (¢} is obtained from eq.{(3) as

follows,

i) ] — Qi) = (1—qt))oi+ qlt)a?, (5)
Then the conditional probability density function
of the speech signal s{f) is

1
V2rQ{1)

plsie)|a, qlf), of, 03) = exp

As(¢) —als(t—1)1

A 20({)..___..._._ (6)
The observed speech signaj 2(¢) can be expressed
as follows,

2{t) =s(t) +ult), (7)

where v(¢) is assumed as a white Gaussian noise
with mean zero and variance o2,

In some speech signal uncorrupted by noise is
given, the conditional probability density function
of the speech z{f) is expressed using the characte-

ristics of the measurement noise,

Pt Is(t), 02) =— s - exp
2nq?
1
B f)-als(t—1))2 ). =1\
Zow S maTst= =1 (8)

In order to estimate the clean speech signal
stt), it is necessary to know the speech signal
model parameters and the observation noise vari-
ance, We set these as an unknown variable vec-
tor @ =ta, q. 62, o2. o7, A1 Here q=[g(1) ¢{2)
< g{N)].

When the observation signal z=[z(1) 2(2) ... 2
(N}] is known, enhancement of the speech sig-
nal is equivalent to the estimation of the un-
known parameter @. The maximum likelihood
(ML) estimator for the estimation of @ is then

expressed as follows :
B, ==arg max L(@)}=arg max log p(2]|©), (N
(<] (o]
where L(@) is a log likelihood function of @. and
Pz|@) is the a priori probability density function
of z given @. p(z1©) is expanded as
N
plzl@) =[] plzit)1©). am
t=]
Combining eqs.(1) and (7},
Z{t) =aT s(¢—1) +ult) +u(f). (1
Since x{#) and w»(f) are assumed to be mutually
independent, and p(z|®) has zero mean, the

covariance is expressed in Gaussian form as

Cit)=E

[{aT s(t—1) +ult) +u(D)HaT s(t=1) +u(t) +u<¢>:fr]

=aTE|:s(t—1)sT(t—1)]a+(1-4(t))af+q(t)o§+af.
(12)

Substituting the above result to eq. (10), the ML
estimation prohlem is expressed as

®,,; == arg max

1 20 12
- -— ¥ log 2nC(#)
2B 2 082 L
In general, eq.{13) is nonlinear and does not have
simple ML solutions. In order to solve this problem
we propose a method that uses the EM algorithm.

[I. Parameter Estimation Using the EM
Algorithm

The EM algorithm is a general purpose iterative
method that regards the observed data as inco-
mplete and tries to solve maximum likelihood
estimation problems. The EM algorithm in its
general form may be found in [8]. This algorithm
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has guaraneteed convergence in many cascs und
can be adapted to swt various purposes,

For speech enhancement using the EM algoritlum,
ihe ohserved data z hecomes the \ncompiete data,
and [z 81 becames the complete data, When the
k-th iteration gives the parameter train { @' --- @},
the parameter estimation procedure at the next
step can be carried out by repeating the E (esti-
mation}-step and the M (maxinuzation)-step in

turn,

E-step: L1© : ©%) =E[ log pis, 2101z, ©*].
(14a)

M-step : @**! =arg max[ 7.(0 : @*) ], (14b)

®

Beginning with the E-step we derive the detailed

EM algorithm for speech enhancement.

— E-step

The joint probability pis, z|@) 1s written as
p(s,210)=plzls, ©) p(s]O)
RY
=[pz(t) | ©) p{s(2}1©), (15)
1
Substituting egs. (6) and (8) into eq.{15),

\
pls, 210) = (2rne?)YV2 11

=1

[2at01—qt)a+qit)ozt ] 12

AY
=[1 plz(2) | 5(¢), @) plsit) | ©), (16}

f=1
The likelihood function can be written using eqs.
{14a} and {16) with known @*:
110 :9F) =N log 2z~ T log [ (1-q(t)iof+qit)a} |
il

N
S B

Y (1-g(8))et+glt)el

_1
2
LEX] s20)) | —2aT ¥ ste—Dse) ]

N .
+aT E"[s(t—l)sT(t—ll]aE—? log a2

\ ) ]
ZL ;I: E¥[ 2 | - 220 M st J+ k4 st T

il7)

where £*[-]=FE*-|z. ©4]. This E-step includes
a px p matrix EXs(z—1)s'(2-1)], vectors EX
(stt~11std) 1. £*%(stt) ] and £*s%¢) ). These con-
ditional expectations can be computed using a
modified Kalman filter that utidizes the parameter
@®* obtained at the k-th interation [8]. For Kalman
filter realization, we rewrite eqs. (1) and (7) in

state space form [9] as

sp(t) = Bs,(f —1) +Gult), (18)

2(0) =H! s,(6) +ul2), (19)

where s, is a {(p+ 1) x 1-dim. state vector [s(t—p)
e8], @isalp+1) x (p+1)-dim. matrix =

0 I ] H=[0-01], and Ga (p+1)
0 a - a,

X 1-dim, vector, With the parameter vectors @*
and {¢*(t} =14, {=0, 1t given, the estimation equa-
tions for the state vector are, by robust Kalman
filtering [11, 12].

Sp U} =ds, (1 —1) +1(1 =) K,(2)

ik (1)) —H @s, (t—1)), (20)
K} =Pilt|:= DHIR+H'P,Gt—DHI",  (21)
Pi(¢lt—1) = ®P;(/ - 1)®' + GQ,G7, (22)

P{) =Pi(11—1) —{(1 - )Kolt) =K () IH Pi(¢]£—1),
(23)

where K;(#) is Kalman gain vector. and P(¢1#—1)
15 the covariance matrix of the g priori error. R
~-¢-*1 is the covariance matrix of the observed
noise and @;=1{(1—1) o7 +7a3} I is the covariance
matrix of the speech source.

The conditional expectations that appear in eq.
(17), E*[s(£)] and E*[s{z—1)s7(¢t—1)]), can be
obtained as follows according to egs. (20}-(23),

EX[s(t)]=H"s,(f), (24)
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Eristi—listd =1 = PltlE~1)
H:H'Pttif- 1" H+R, ! !

CHYP U - s s, U, 25)
— M-step

To obtain a new parameter value ©%*! eq.{17)
must be maximized with respect to its parameters.
As can be seen in eq.{(17), we can divide the par

ameter vector into ¢ and ©;=ta. q, ¢{. ¢i. o l.
The maximization of eq.{14) must be carned out
with respect to ©, which is in general toc com-
plex. This paper proposes an effective algorithm
that repeats detection of ¢ and estimation of &,
1o maximize eq.{14b).

First if @% is given, the problem of detecting ¢
1s equal to maximizing eq, {14b) with respect to ¢
Second, regarding ¢*** as obtained from the k-th
detection step, follows the estimation of &, by
maximizing eq. (14b) with respect to @,. Then the
M-step in eq.(14b) is divided into two steps as
shown below :

detection step : ¢** ! =max L{g: ©%), {26a)
q

estimation step : @X =max L(@,:¢*"!, ©%).
9|
(26b)

These two steps are explained in detail below
—detection step

When ¢ is unknown and @, is known, /{g:0%}
is a target function for detecting ¢. Fixing ©, in
€q.(17) to known value and removing those terms

that appear constant with respect to ¢,

X
Lg:0%) =-T logt{l—gtt))e? +glH)e?"
=1
e EX[(st) —a¥ste—1))2]

_]' > - - (2?')
2 =0 (1=qt))e? gl e?

Substituting eq.(27) into eq.{26a), the function
for the detection of g becomes

.
max [ — % logtil=¢{t))ei +alt)a’"!
4 [RS |

Y l
E .-}
=t (1=g(t))o? +qt)e”

|
0o f

!
A EH () ] -2a" "EX st - st} ]
+a?'*£*[stt—1)s"'(t—1)]a*}], (28)

Using A* obtained at the k-th iteration, we can
obtain an optimal ¢, among 2% possible values of
¢, that maximizes eq, (28). But employing this
method to all 2¥ candidates in all iterations is not
practical, which necessitates a technique that finds
a locally optimum value of ¢. This may fal} a little
short in accuracy, but requires far less computation
than looking for globally optimum value of 4.

We set #*(¢) as EX[s(¢)—a’"s(t—1)]. Detection
of ¢&*! from this signal i1s regarded as a classic
detection problem. The parameter g**! can easily
be obtained by a threshold detector using a likeli-
hood ratio test, Given #*(#), the likelihood function
for the detection of g(#) becomes

LUgUe) [2*(8)) = plaltYigld)) plg(e)). (29)

From eq.(6),

1
N2 (1—q(t))o? +q(t)a? !

plur(t) 1g(8)) =

u*

rexp[ - 20(1-g() Yol +q(t)) 6%}

]_ (30)

Letting A{#) denote the likelithood ratio for dete-
cting ¢**! given #*{(?).

_ Ligly=1:u*{)
MO = =020

M=y

_ plur()gle) =1) plalsy =1) <

T plak () () =0) plg(t) =0) >
q""{t!*l

1. 3D

The ML threshold detector for ¢**! is expressed
as



Faper Ditle s speceh Paratneter Extimation and Enhancement Using the EM Alporithm 73

wt (f)

VA~
o
=
QA
I
-
=)
i
S

-estimation step

Al this step, we assume that the parameter O,
is unknown and the parameter ¢ is known. Let
the function for paramenter estimation be L(©,:
Of, ¢k, When we fix ¢ in eq.{26b) to the known
value of ¢**'. we can get the following equation

v

LG8 gt = = T logitl =¢* Ut i+ g * 1Dt

1]

_b e Bty -alse-1] N o?
27 = Ui+ (e 2 8%

RY
—:;1—_: SRR ] 220 E st 1+ EXsHn ).
24 1o . .
. (331

We remove the terms that are constant with
respect ta ¢**1 since they do not contribute to the
maximjzation process, Substituting eq. {33) into eq.
(26b) and estimating the parameters,

@t (T o EXsit=Ds’ti=1)] )

~ H™(t)
Este—1D)s(d)]
.Y
~ ) (34)
AY ].
(gf Jet 1= § TGy HLl—g T U EX (D]
(—1 ()
+al (1—g* N Exsti—1)s(H ], (35)
AY 1
(i "= %
”: St
N
+at' Y gt ER sti-1)s(n ], (36)
-l

where H* (/) =(1~- q"”(tlla +q"“{t) . Sub-
stituting eq. (33) into eq. {26b). the covariance
of the observed noise is

(g i1 e ax

- A 3
o N g e iz -k b
| }
Therafora = becomes
}' N
m;;**'--- Yizn -4 s )R (38)

Also, when ¢**1 is known, the probability for {g¢{¢)
=1tis
1 & , .
AFl=—- ¥ gk tIg), (39)
N T
A speech signal model has been proposed that
can be used regardless of the voiced/unvoiced
classification. In this regard this model differs
from other conventional speech enhancement
schemes. The EM algorithm is employed for ML
parameter optimization, and a robust Kalman filter

1s used for speech enhancement.
. Experimental Results

In order to show the performance of the proposed
speech enhancement algorithm, real and synthesized
speech signals with additive white Gaussian
observation noise were used. The noise was added
such that 5 different input SNRs were available :
¢, 5. 10, 20 and 60dB. The speech signal was
collected from a male speaker with 10 kHz sampling
rate,

For synthetic speech signals, parameter values
In © and the SNR of the speech after processing
are compared with those using conventional
Gaussian assumption. The performance tests are
conducted for variance ratios of the two mixed
excitation source and occurrence probability &,
The variance ratios are 5 and 10, and the values
of & are (.01, 0.02, 0.05 and 0.1. The ratio of the
occurrence probability is equal to the pitch period.
For real speech segment /a/ obtained in a noise-free
environment, the performance comparison is made
by means of post-enhancement SNR, The results
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Jable 1. Comparisons of SNRs of svinthete specchiC :conventional, 7
proposed!, lar for vanance ratio of 5.
input SNR odB B 10dB 2B neise-free
B . C b . cp cp . cop - . .P .
001 B0 BT 01 12 100 154 165 2 w0 o
o, 60 87 0 91 112 1L0 154 165 2 w0 A
T o ss w7 sa 12 w02 54 0 2 o 1m0 o |
o e mr w1z oo B4l 15 TY
ib) for vanance ration of 10
input SNR 0dB 5d¢B 10dB 20dB noise-free
B cp | cpP C P c P
0.01 5.7 HT .._.8,5 11.2 10.2 154 15.2 22 19.0 A
0.02 57 85 8.5 11.2 10.3 ig.r.l."“—_HIS.l 22 19.0 24
0.05 _5_'7__8F 8:) 11.2 9.5 15.4.1.".”—14.9 22 185 24
0.1 5.0 87 '}8 11.2 9.5 154 14.7 22 182 24
Table 2. SNR improvement of real speech segment /a/, References

input SNR © 0 5 | 10 | 20 | 60(dB)
T T T ]

conventional ' 58 | 82 | 11.2 | 165 20

proposed ' 85 | 102 | 14 21.5 23.8

are summarized in Tables 1 and 2. We could see
that the proposed algorithm was not influenced
by changing values of & and the variance ratios,
whereas the conventional method was,

The excitation model we proposed is a generalized
one, and Gaussian form can be derived with ease,
This algorithm can be extended to the case where
more than two excitation source components con-
sidered.

We developed a speech signal model on a
two-mixture excitation source, and used the EM
algorithm to estimate and enhance the speech
parameters, Through computer experiments we
showed the performance of the proposed algorithm.
We could see that the proposed technique is better
than the conventional method based on Gaussian
assumption,
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