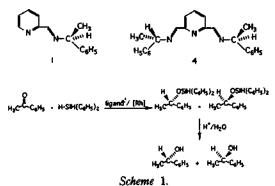
Journal of the Korean Chemical Society 1994, Vol. 38, No. 7 Printed in the Republic of Korea

단 신

C2-대칭성 키탈 Bis(imino)pyridine 리간드의 합성

安温鎮·陳明鍾*

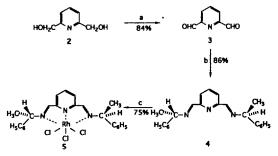
인하대학교 공과대학 화학공학과 (1994. 3. 16 접수)


Synthesis of C₂-Symmetrical Chiral Bis(imino)pyridine Ligand

Sum-Jin Ahn and Myung-Jong Jin*

Department of Chemical Engineering, Inha University, Inchon 402-751, Korea (Received March 16, 1994)

During the past two decades, there has been considerable interest in catalytic asymmetric synthesis using a chiral ligand-transition metal complex catalyst¹. It is one of the most promising methods for synthesis of optically active compounds, since a large amount of optically active products are formed from a small amount of chiral materials. Common chiral ligands have been phosphines and extensively studied in a variety of catalytic application². Recent research of asymmetric hydrosilylation (*Scheme* 1) focuses on the use of nitrogen based ligands^{3~5}.


Optically active Schiff base 1 has been used as a bidentate chiral ligand in the asymmetric hydrosilylation of prochiral ketones⁴. The very recent work of Nishiyama *et al.* has showed tridentate ligand bis(oxazolinyl)pyridine to be better than bidentate ligand in the reaction⁵. We have given

much attention to the synthesis of such chiral tridentate ligand like 4.

Here we report the synthesis of C_2 -symmetrical and tridentate chiral Schiff base from 2,6-pyridinedicarboxaldehyde (*Scheme 2*).

Several methods are available for the oxidation of 2,6-pyridinedimethanol 2 to 2,6-pyridinedicarboxaldehyde 3⁶. Selenium dioxide was the best oxidizing agent. Treatment of 2 with 2.1 equiv. of SeO₂ in dioxane at 80°C for 4 h afforded 3 in 84% yield after recrystallization (hexane/chloroform=3/1). Optically active tridentate 2,6-bis(1phenylethylimino)pyridines 4 having two imine skeleton would be easily synthesized through direct Schiff base condensation. Treatment of pyridinedicarboxaldehyde 3 with 2 equiv. of optically acitve (R)-1-phenylethylamine in refluxing benzene gave, after flash chromatography of the crude

Reagents: (a) SeO₂ (2.1 equiv), Dioxane, 80 ^oC; (b) (*R*)-1-phenylethylamine (2.0 equiv), benzene, reflux; (c) RhCl₃ 3H₂O, ethanol, 60 ^oC.

Scheme 2.

安渥鎮・陳明鍾

Table 1. Physical properties of compounds 4 and 5

Compd	mp.	$[a]^{24}_{D}$ (c=0.8, CHCl ₃)	NMR (CDCl ₃), δ
4	oil		¹ H-NMR 1.62(d, $J=6.9$ Hz, 6H), 4.65(q, $J=6.5$ Hz, 2H), 7.24 \sim 7.46(m, 10H), 7.78(t, $J=8.3$ Hz, 1H), 8.13(d, $J=7.8$ Hz, 2 H), 8.49(s, 2H)
5	182°C dec	-2.9°	¹ H 2.07(d, $J=6.9$ Hz, 6 H), 6.12(q, $J=6.5$ Hz, 2 H), 7.38~7.60(m, 10H), 7.64(s, 2H), 7.69(d, $J=$ 7.9 Hz, 2H), 8.03(t, $J=8.$ 3 Hz, 1H)

product, 4 as a colorless oil in ca. 86% yield. The tridentate chiral ligand 4 reacted with $RhCl_3 \cdot 3H_2O$ in ethanol at 60°C for 3 hr to afford Rh complex 5, which was purified by flash chromatography (ethyl acetate/methanol=7/1) to give stable orange solids in 75% yield.

The structural assignment for 4 and 5 are based upon ^tH-NMR spectral data. The spectral data are collected in *Table* 1. In particular, the protons of the CH=N groups exhibit characteristic low chemical shifts (4: $\delta = 7.64$, 5: $\delta = 8.49$)⁴.

Now we are examining the potential of this new ligand and the corresponding Rh complex in asymmetric hydrosilylation of prochiral ketone.

ACKNOWLEDGEMENT

This paper was supported by nondirected research fund, Korea Research Foundation, 1993. We thank Sang-Han Kim and Heung-Sik Choi for experimental assistance in the initial work.

REFERENCES

- For general reviews on asymmetric catalysis see:

 (a) Brunner, H. *Topic in Stereochemistry*; New York, 1988; Vol. 18;
 (b) Kagan, H. B. Asymmetric Synthesis; Academic Press: New York, 1985; Vol. 5;
 (c) Ojima, I.; Yamamoto, K.; Kumada, M. Aspects of Homogeneous Catalysis 1977, 3, 186;
 (d) Merrill, R. E. CHEMTECH 1981, 118.
- For an excellent tabulation of optically active ligands see the supplementary material section of ref. 1d.
- Brunner, H.; Riepl, G.; Weitzer, H. Angew Chem., Int. Ed. Engl. 1983, 22, 331; Brunner, H.; Reiter, B.; Riepl, G. Chem. Ber. 1130, 117, 1984; Brunner, H.; Brandl, P. Tetrahedron Asymmetry 1991, 9, 991.
- Brunner, H.; Becker, R.; Riepl, G. Organometallics 1984, 3, 1354, and references therein.
- Nishiyama, H.; Kondo, M.; Nakamura, T.; Itoh, K. Organometallics 1991, 10, 500.
- Hudlicky, M. Oxidations in Organic Chemistry ACS; Washington, D. C., 1990.