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We have formulated a theory for describing the time-dependent rate of the photolytic radical recombination reaction 

occuring in a viscous medium. The recombination after flash photolysis consists of an initial geminate-pair recombina­

tion phase followed by a slower b거Ik recombination phase in which radicals from different parent molecules encounter 

via diffusion and combine. In most theories of photolytic radical recombination reactions, however, only the dynamics 

of a single geminate pair was considered and the intervention of surrounding radicals in the geminate pair dynamics 

was neglected. The present theory treats the interplay of the geminate-pair and the bulk recombinations within a 

unified framework. Numerical calculations show that prediction of the present theory differs significantly from that 

of conventional theories.

Introduction

A few years ago Lee and Karplus1 proposed a general 

theory of diffusion-influenced reactions, which is based on 

a hierarchical system of many-body Smoluchowski equations 

for the reactant molecule distribution functions. There, in 

treating reactions of the type

kf
(1.1) 

kr

we have assumed that thermal dissociation rate of C mole­

cules is comparable to the combination rate of A and B mo­

lecules. Hence, initially we have nonnegligible concentration 

of A and B molecules.

However, in the case of photolytic radical recombination 

reactions, the initial concentrations of A and B molecules 

may be practically zero before the onset of photodissociation 

and the dissociation rate coefficient kr should include both 

thermal and photolytic contributions. To treat such cases we 

have to extend the previous formalism.

There are three issues that will be addressed in the pre­

sent work. First, in most theories of photolytic radical recom­

bination reactions2*10, only the dynamics of a single geminate 

pair was considered and the intervention of other radicals 

in the geminate pair dynamics was neglected. Hence a uni­

fied theory to deal with both the geminate recombination 

phase and the onset of bulk recombination phase when 

the nongeminate recombination dominates) must be pursued 

especially to understand the intermediate to long time reac­

tion dynamics. Recently, there have been a few attempts11^14 

to deal with this aspect of photolytic radical recombination 

reactions. However, the treatments involved some unappea­

ling aspects from physical viewpoints. For example, validity 

of the theory of Agmon and Szabo14 is limited to the pseudo- 

first-order case, namely where one reactant, say B, is present 

in excess over the other, say A. Furthermore, their theory 

involves an assumption that the geminate and bulk bimole- 

* Address until January 1994: Department of Chemistry and Bio­

chemistry, University of Colorado, Boulder, CO 80309-0215, U.

S. A.

cular rebindings are independent, which is not true in gene­

ral.

Second, in all previous theoretical treatments of photolytic 

radical recombination reactions2-14, it has been assumed that 

all radicals are produced at £=0 by a 8-function-like light 

pulse. But the photolysis pulses employed in experiments 

may not be very much shorter than the recombination times 

so that some convolution of the 8-function pulse result and 

the time profile of light pulse is necessitated to compare 

the theoretical prediction with experimental results. An im­

plicit assumption in such approaches is that newly generated 

radical pairs will be in the same dynamic environment on 

the average. This assumption may be appropriate if the ex­

ternal photolytic radiation is so weak that its perturbations 

on the radical population and distribution are very small. 

But the assumption fails when the radical concentrations ac­

cumulate considerably under a photolysis pulse with long 

duration. A similar situation has been discussed recently in 

the case of diffusion-influenced fluorescence quenching15. In 

the present theory, we consider explicitly a photolysis pulse 

of finite duration from the beginning.

Third, in most theories of photolytic radical recombination 

reactions, contribution from concurrent generation of radicals 

by thermal dissociation was neglected. We find that in some 

cases as examined below this contribution should not be 

neglected especially in the analysis of intermediate to long 

time kinetic data of photolytic experiments.

In the present work, we extend the previous formalism1 

for treating reversible diffusion-influenced reactions to incor- 

porat운 the above-mentioned aspects in the photolytic radical 

recombination reactions. The paper is organized as follows. 

In section 2 we present a general theoretical framework for 

describing the radical recombination dynamics following pho­

todissociation. In section 3 we obtain a formal expression 

for the time-dependent recombination rate coefficient and 

evaluate it analytically for a simple case in which the poten­

tial of mean force and the hydrodynamic interaction between 

the radicals may be neglected. In section 4 we then explore 

the implications of the present theory, in contrast to the 

conventional theory, via the numerical calculation of the va­

riation of the radical concentration with time.
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Kinetic equations

Suppose that there are N% molecules of species A and 

M molecules of species B. These numbers include the bound 

ones in C molecules. We than label molecules of species 

A and B as As (/=1,2,…，A*) and B) (，=1, 2,…，A%，respec­

tively, and introduce the following probability density fun- 

tions:

— probability density that the molecule At is in the 

unbound state and is located at 门 at time t;

尸切(尸&£)=probability density that the molecule Bj is in the 

unbound state and is located at rB at time t;

= probability density that both At and B； a*re 

in the unbound state and are located at rA 

and rB, respectively, at time t;

Pcy(rCtQ，ctt) = probability density that at time t 4 and B； 

form a bound molecule C that is located at 

rc with orientation Qc；

鸣(s以= probability density that at time t Ai 

and B； are in the unbound state and are 

located at rA, rAf and rRr respectively;

F用尸c,ec,£)=I기"obability density that at time t A, in the 

unbound state is located at rA and At and 

Bj form a bound molecule C located at 

rc with orientation Sic；

and so on. As the notation implies, we are neglecting any 

orientational anisotropy in molecules A and B. This neglect 

may be justified if the molecules are small and have spheri­

cal shapes so that their reorientational motion occurs very 

rapidly compared to the diffuisive translational motion.

The evolutions of the one-particle probability density fun- 

tions PAi and P月 are governed by the following kinetic equa­

tions1:

P%(r사)=La PaM以)- £ jd巾dZc S%(rA,rB\Zc)

〉/仙丿3皿/)+ 2 JdrfidZc S實(Zclw诚)Pc〃(Zc,f)

昭r
~으 Pb毎，»=1"收" g jdrAdZc 시ZQ

乂％畋九混)+馬Jdr^dZc Sg(Zcl尸"赤)/七方0湿)

(1)

(2)

Each term on the right hand sides of eqs. (1) and (2) has 

the following physical meaning. LA (Lb) is the Smoluchowski 

operater governing the thermal evolution of the one-particle 

probability density funtion PAi (Pb) in the absence of reaction. 
The sink function S%(s畠 ZQ represents the depopulation 

rate of the unbound molecules A and B at 匕4 and rB due 

to the formation of a bound molecule C with configuration 

Zc三(尸c,요c). The sink function S^(Zc\rA^B^) represents the 

dissociation rate of a complex molecule C with configuration 

Zc into unbound molecules A and B at rA and rB. We will 

assume that these sink functions can be represented by

S匕3投니 Zc)=爲 8(rc - /?)8(cospc 一 cospr)8(ac 一(爲)8(攻4 一 o)/o2

(3) 

隨(기=属 8(比、—Zf)8(cosPc—cospr)8(ac 一 %力。以 一 o)/o2

+kp(t) 8(rc - ^)8(cos|3c 一 cospr)8(ac 一。沸(w - ％)/* ⑷ 

where (e시3q) are the spherical polar coordinates of 独 

( = rB—rA and R is the center-of-mass coordinates of the 

unbound A-B pair. (Bgc) (=HC) are the angles representing 

the orientation of the C m이ecule formed from the A-B pair. 

H in eq. (3) is the parameter measuring the recombination 

rate of the A-B pair at the separation of rSA — o. In eq. (4), 

the first term on the right hand side represents the contri­

bution from thermal dissociation of C, while the second term 

that from photodissociation. As denoted, the separation of 

a photodissociated A-B radical pair is which may be diffe­

rent from the separation o of a thermally dissociated pairt16. 

In general we have While 尾 is a constant, kp(t) and 

thus 隨 may vary in time since the photodissociation rate 

depends on the radiation intensity.

Similarly, the evolution of the probability density funtion 

Pcl} is governed by

-^7 Pc!}(.ZGt)=Lc PCi}(Zcfi - \drAdrB Sg(기 久由) P%(Zc,t) 

+ "払如，姦(s/Zc) PAtB}(rA,rB,t)
(5)

The two-particle probability density function PAiBj evolves 

in turn according to

一步 PAiB”A#B,t)=LAB PAjBj(rAtrB,t)

-巾Zc S%(w=Zc) Pa畋a血)

+ #Zc 階（기方加漪〔/Zc/）

扌jdr/dZc （以'，由Zc）尸4讯奶（n以,切丿） 

寸 jdHdZc，爲(气4,必|%) PAiBjB&AjkW£)

s飾ZclH,演）

+ 1 jdZcd" S方(Z시 50 P功어#aZQ) 

内 ⑹

Here Lab is the Smoluchowski operator governing the evolu­

tion of the two-particle probability density function PA^ in 

the absence of reaction. The second and the third terms 

represent the disappearance and regeneration of the 

pair due to formation and dissociation of the complex mole­

cule Cij, respectively. The fourth and fifth terms involving 

the three-particle probability density functions account for 

the removal of either 4 or B} due to the competitive reaction 

with a third molecule other than A, and B； On the other 

hand, the sixth and the seventh terms represent the changes 

due to the recovery of either 4 or B, by the dissociation 

of a complex m어ecule formed with a third m이ecule.

Higher order equations governing many-particle probabi­

lity density functions can be written down in a straightfor­
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ward manner, but the solution to the whole hierarchy of 

kinetic equations is difficult to obtain. To truncate the hiera­

rchy at the level of two-particle kinetic equations, we need 

to approximate the three-particle probability density func­

tions in terms of one-particle and two-particle probability 

density functions. In the superposition approximation11718, we 

may write

R”啊(w/血)履)R㈣(sS) R啊)(方',fgg) (7)

Here F&啊)(nUkk) denotes the conditional probability density 

that 4 is at rA at time t given that is at rB. F，如功)(为'』1皿) 

is defined similarly. In passing we note that in terms of 

this conditional probability density the two-particle probabi­

lity density function can be expressed exactly as

Fa邑(门,，咨，£)=尸畋0,£) P&(功)(，温屁)=尸敏温)PI Ci) (8)

We then introduce various concentration (number density) 

fields that are related to the particle distribution functions 

as follows:

C_4(W) = the number density of A molecules at r* at time t 

=纟尸&(4) (9)

1 = 1

Cb(fb, t) = the number density of B molecules at rB at time t 

n*
二E珏細挡 (10)

①c(Zc,f) = the number density of C molecules with orienta­

tion fie at rA at time t

里 里
=X X Pc国) di)

I = 1 丿=1

number density of A molecules at rA at 

:t given that Bj is at rB

he
imf

 

t
 
t

- 

- F而㈤）（以，小g） (12)

and so on. Kinetic equations governing the evolution of these 

concentration fields may be obtained by summing eqs. (1), 

(2), (5) and (6) for all reactant molecules. We make the 

usual assumptions that (i) the volume V of reaction vessel 

is large enough and the shape is such that surface effects 

may be neglected, (ii) the initial distribution of reactant mo­

lecules is an equilibrium one except for a specific correlation 

between each geminate pair of A and B molecules, and (iii) 

there is no external field. We will then have

CA(rA,t) = [A]; = [B]; <Dc(Zc,0 = LC]/4n (13)

where [a] denotes the uniform bulk concentration of species 

a at time t. Also with such experimental conditions, the con­

ditional concentration fields, Cy's, are statistically equiva­

lent for all j and depend only on the relative separation 

\rB-rA\\ that is,

明1尸8)=。」如)(尸&以)=[A] PabSa/) (14)

where we have also introduced the none이uilibrium pair cor­

relation function Qab(Tba^) which characterizes the relative 

distribution between unbound A and B molecules at time t.

With these assumptions, summing eq. (1) over i=l,2，…,N； 

yields

~衆 [4]=如 Ml — ^drfjdZc S；8(wklZc)p曲(尸&사)匚们留]

+ T一 JdZa如、여%시由,，诚)[C] (15)

Since La=Da V；, where DA is the diffusion coefficient of 

A, and [A] is independent of ” the first term on the right 

hand side drops out and eq. (15) reduces to the familiar 

rate law,

으 [A] = 一切)+ 弑t)[C] (16)

Here the time-dependent bimolecular recombination rate coe­

fficient kj(t) and the unimolecular dissociation rate coefficient 

kr(f) are defined by

kf(t) — ^drgdZc S%(sr81 Zc)p，4E(，m,f)

= 4n居 Pab(c아) (17)

知(t) =-豪 \dZcdrB S習(Zeis•赤)

=足+庵(f) (18)

In the absence of external radiation, we have

杰0=底=蜘 (19)

which identifies the thermal dissociation rate parameter 底 

as the equilibrium rate constant for Cf4+8 reaction. Sum­

ming eq. (2) over j or summing eq. (5) over i and j gives 

the same rate equation as eq. (16):

-分 圓=—务[C]= 叵|+顷)[C] (20)

To evaluate the bimolecular rate coefficient 顷)，we need 

an explicit expression for the noneqlilibrium pair-correlation 

function p曲.The kinetic equation governing the evolution 

of Pab is in turn obtained from eq. (6). Summing eq. (6) 

over i and j gives

■으 = LA3LB1 LabPab^ba^)

_]dZc s%(m시Zc)p相(，幼,t)

+ 느 jdZc S铲(Zcl，WB；t) [C] 

r " 썔 쌔

-\drA'dZc S5B(r/,rB|Zc) £ £

J f-1 ; 1
g%奶（尸"

• 쌔 샐

drB'dZc S%(Wb'IZc) £ £
1=1 j=l

寸 F.&b网(La/bM ,t)

r 理 쌔
+ dZcdrA' S善(ZcS&t) £ 1

J ( = 1 丿"=1

f 씨 쌩
+宓以如’s?气zdrmW) Z £

J J-1 j=l

£ R&sZc/)

(21)

Terms involving the triple summation of three-particle pro­
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bability density functions can be manipulated by using the 

superposition approximation eq. (7). For example, we have

쌔 쌤 쌜
Z Z 2 8啊功(wn',W)

,=1宀舟

섐 計 썌

=Z<卩町知,t、)，g岫)S昌也)£ SgM'/l也)
丿=1 (=1 /=1

쐠 쌔

一2胸克冷£ R㈣)(，皿生泪岫)(以0，挣) 
>--1 z = 1

=[田 C.4(B)(rfiA/) C4(g)(7&4',£) + 0( LAgB])

=P曲(&,£) p.4B(椰‘丿) (22)

where rBA= and rBA= \rA-rB\. The term denoted by 

has the magnitude comparable to

and can be neglected in the —8 limit, A similar manipula­

tion gives

새 섀 此
£ £ 援 Fm网(二4,脇尸B J)= p.4B(m,f) pA8(，函"/)

F 7=1 宸

(23) 

where 尸以”= "「必丨. The triple summ가ions in the 6th and 

the 7th terms on the right hand side of eq. (21) can be 

in turn manipulated as

昭 % 噸
£ £ Z PAjQj(rA，Z사)
/ 1 j - 1 I 1

s

昭冲 域
=馬 g PcjZ&t) % R的〃(WlZc)

■쌩 域
=Z； g PcjZc,t) L4] pAC(fAtt\ZC)

J 顷

二畝'(ZcJ) [A] p,4c(ciIZc)

=37 UE] P.4C(f4,nZc) (24)

and

•셋 샘 吨
£2 2 Rg血，z&t、住一厂 LC1LB3 Pm(MZc) (25)
t 1 ； i k 1 4n

E

Here denotes the conditional probability den­

sity that At is at rA at time t given that C/y is at the configura­

tion Zc. P/k(〃/LZc) is the nonequilibrium pair conflation 

function between A and C molecules; that is, [Alp^cfe/IZc) 

gives the number density of A molecules at rA given that 

a C molecules is at the configuration Zc. pBc(rB,t\Zc) is defi­

ned similarly.

Substituting eqs. (22)-(25) into eq. (21) and using the rate 

law given by eq. (16) together with eqs. (17) and (18) defining 

the rate coefficients k^t) and kr(t), we obtain

P曲("&U)= LabPab&baM)

-［如［可 弟쁫F히 pM由）

5(独一。)

4no2

凶끄里二으

4m折
EC]［S+碇。+林

+ 知 U)L4][C] ( pAC(fA ,t I Zc) — Pab(Tba X) }
+ZW)[B][C] {pBc(r"Zc)- pAB(m/)} (26)

The experimental situation we address in this work is 

as Allows. For fKO, 나ie system is in the thermodynamic 

equilibrium state. Although there may be a case in which 

the equilibrium constant for the combination reaction is so 

large that = we can define the equilibrium pair 

distribution function g：海ba) between A and B molecules in 
any cases. Hence we have

PAB(rBAft)그g?/(w) for f<0; (27)

~~~ P.4B(rBA,t) = 0 for KO. (28)

For />0, the system is irradiated and C molecules begin 

to dissociate to give appreciable ammount동 of [X] and [Bl 

We can then divide eq. (26) by to obtain

으' P曲(/瓦서) = LabPab&baQ — 就玉뽱厂흐PAB(TBA,t)

+妙 e(濟*。;히+抑) 皿8%次)

+E洲)0(0 L4] {pAC(rA,tIZc)- PAB(rBA,t))

야") 櫥) [8] I pBc(rn,t I Zc) - pAB(rBA /)} (29) 

where

e(£)=[C]/L4][B]. (30)

Expression for the Rate Coefficient k")

When [A] and [B] is not too large, we may neglect the 

다h and 6th terms on the right hand side of eq. (29)1. Then 

the equations we have to consider are

郴)=4说 p(o,0 (31)

pg) =L0(r)p(rJ) 一 S⑺p(H)

야0。)&£*)+W)<t사)으;爪?)(f〉0) (32)

To simplify the notation we have left out the subscripts AB 

and BA from p曲 and 户曲(=1的一시), respectively, and have 

introduced

S") = jdZc S&(r#，小 Zc)二株 8匕了2 허 (33)

乙o(尸) is the red니ced Smolu사)owski operator1 for the relative 

motion of A and Br and is given by

飛) = (으 + 쎄书 + 0으 t씨 (34)

where d(尸)denotes the relative diffusion coefficient, which 

depends on r if the hydrodynamic interaction between A 

and B is to be in이uded, and U(r) is the potential of mean 

force. B=1/如7、with the Boltzmann constant 如 and the ab­

solute temperature T.

If U(r) has a very steep potential wall at r=a, p(#) must 

satisfy the reflecting boundary condition,
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｛쎄응 벼으 t")]p(")｝。= 0 (35)

By the definition given by eq. (14) approaches unity 

as r goes to infinity,

lim p(以)=1 (36)
r—*oo

The initial condition for p(r,t) is that given by eq. (27); that 

is,

p(r,t = 0) =g⑵⑺=exp[ - (37)

where we omit the subscript AB also from ^(r).

A formal solution to eq. (32) is given by

p(r, t)=⑺—Slr)] p(g 0)

+怔袂5妇)｛呼斜姒I)普滲｝

(38)

Using the operator identity19, eq. (39a),

舛顷=d"+[di er(A"ff) Be(t~x｝A (39a)

J o

=+ [dx *B。'서 +B) (39b)

j o

and noting that L(0)p(匕0)=L°(尸)g⑵&) = o, we can rewrite the 

first term on the right hand side of eq. (38) as

%)(尸,0)=g⑵(〃_ J dv 加"-s皿$(成⑵(尸) (40)

Putting eq. (38) and (40) into eq. (31), we obtain a formal 

expression for the rate coefficient k^f)\

M)= 4丁就 p(G, t)

=jdr S(r)p(r,0

=此厂此)J： dr[l-^(t-T)jA(T)

+ 此)J： dt K，*(t —T)a(—T)△而 (41)

Here is the recombination rate constant that would be 

observed if the pair distribution between A and B were main­

tained at equilibrium, and is given by

払=4说砂S) (42)

Kq is the equilibrium constant,

K妒니杼如 (43)

where 为，=柘 as noted in eq. (19). The function a(0 is defi­

ned by

(44)

A(r) and A/(r), which will be called the memory kernels, 

contain information on the reactive pair dynamics and are 

represented by the following expressions:

△(。=伍 S(尸)洞％) (45)

A/(r) = Jrfr S*s-쓸구^- (46)
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where

L(r)=L0(r)-S(r) (47)

and

S(r)=S(,)/乾*W)T 6厂?) (48)
4no

We now investigate the structure of the memory kernels. 

Using the operator identity, eq. (39b), iteratively with A =£0 

and B= — S(r)= —^etlS(r), we can write

A(r) = J drS(f]exh^r｝S(f)gt2)(f)

-씨drS(r) J"濟 財®、(淑*(成/%，) (49)

Eqs. (45) and (49) for A(r) may be rewritten in the form

△(沪伍传)伍严)[*%*)]s(血⑵(尸q)

= 伍S(巾网叶-쓰구立 ]顶瑚化) 

一바项:JdrS(”jd"…1뻬「쓰請以 国、)

X伍？伽』吃了 ]s仇)疔㈤ (50)

Introducing the Green's functions for eq. (32) in the presence 

and in the absence of reaction,

(新,伽=*<1普뀌] (51)

and performing the space integrations with 5(r) given by 

eq. (48), we rewrite eq. (50) as

A(Q=g(2｝(o)—l Gr(6 니 o)

=g⑵何)7 G(o,rlo)

一爲J dEi[g⑵(6)7 G(o,l리o)][g⑵(6)t G如，티成

(53)

Taking the Laplace transformation of this equation [the Lap­

lace transform of any function /(/) will be denoted by 役)丄 

we obtain

A(z)=[l 냐^瓦 (z)] 1 瓦 (z) (54)

where

A0(z) =/2)(o)-1 G((y^la) (55)

The same procedure can be applied to obtain the expression 

for A/(z):

AX2)=[l+^Aofe)] 1 [g⑵(o)t ©(◎,』&)] (56)

Explicit expressions for A(t) and A/r) have been obtained 

only for a very simple model case. We assume that the pote­

ntial of mean force U(r) vanishes for r>a but goes to infinity 

for r<o. We also assume that the hydrodynamic interaction 

between A and B is negligible so that is simply given 

by the sum of the diffusion constants of molecules A and 

B; i.e., d(尸)드以+2弟=。In this simple마 case, the Green's 
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function G(r,zIr()) can be readily obtained:

&'如。)=3赤T会[exP(F，F)

—exp( — a(r+ r()— 2b))]

+1匚읂a exP( — a(尸+为一 2a))} (57)

where a=(zyZ))1/2. Therefore, the expression for A(z) in eq. 

(54) becomes

A(z)=[(就/■知)+血g ⑵刀1 (58)

where kD = 4noZ) Inverse Laplace transformation gives

△(£)=如 XDa/2ML(1M1/2-A n(4f1/2)] (59)

where，三[1 + Q%/如)](Z)'"/。)，and we have defined the fun­

ction Q(y) as

n(y)=exp(y2) erfc(y) (60)

Applying the same procedure we obtain

攵以)=如'(£)//(丁)(时丁泌"+4)-】 exp[ - (a(/- o)0/Z))1/2] (61)

which gives

△,)=如 l(Pl/2M(a/cd) exp( 一

X^(l/n/)1/2-71 厂"+，4 尹 2)] (62)

where A is the same constant as given above and B三囱一。) 
D-1/2.

Model calculations

We will consider a general situation where an excess of 

B molecules may be present at £ = 0; that is,

[8]。=盆+L4]° (63)

where CB is the concentration of free excess B molecules 

before the photolytic radiation is turned on and the sub동cript 

0 denoting the values at Z = 0. We assume that initially the 

excess B molecules, i.e., which are not derived from C mole­

cules, are distributed randomly with respect to A molecules.

The initial concentration of A molecules is then given

[爲2{[쓰+(5专 )丁시5 W )} (64)

where Co denotes the total concentration of A molecules that 

are present either in the bound molecules C or as the free 

molecules; that is,

G)늬，l]o+[C〕o=[A] + [C] (65)

The rate equation (16) governing the time-dependence of 

the concentration of unbound A molecules can be written 

in the form

을 L4]= 一你t)L4](G,+ L4])+敬t)(Co —L4]) (66)

Expression for the time-dependent forward rate coefficient 

顷)is given by eq. (41) with the memory kernels A(r) and 

A/r) given by eqs. (59) and (62), respectively. The reverse 

rate coefficient kr(f) is given by eq. (18) and depends on 

the radiation intensity. We can therefore investigate the re­

combination kinetics for a given system once the irradiation 

function a(t) [see eq. (44)] and the motional and reaction 

parameters, D, o,喝 论二 and 总甲 are provided.

In many experiments, the photolytic radiation cannot be 

represented as a 8-function pulse. Therefore, in the conven­

tional approach one tries to fit the experimental data to the 

convolution of the 8-function result with the radiation profile 

2'16,20; that is, it is assumed that

= + ^(T)EC]t s*一。 (67)

where the first term L4]绍 on the right hand side denotes 

the equilibrium concentration, and the second term the no­

nequilibrium contribution due to the photolysis;

is the number of A molecules created by photodissociation 

of C molecules between times r and r+<Zr and Sconv(t~T) 

is the survival probability that an A molecule created at time 

r has not recombined with any B molecule until time t. A 

subtle assumption that is made in evaluating — r) is 

that A molecules just created are surrounded by an equilib­

rium distribution of B molecules except for a correlation 

with the gemin간e B m이ecule. This assumption renders the 

survival probability of A molecules depends only on the time 

(£—t) elapsed since its creation regardless of when they are 

created. However, as the formulation presented in section 

2 shows clearly, this assumption may be invalidated.

It is usually further assumed that the photolytic radiation 

is not so intense that variation of [C] with time can be 

negligible; i.e., [C丄 in eq. (67) is assumed to remain con­

stant

[C 丄=6—L4 丄二 Co (68)

By substituting eq. (68) into eq. (67) with the relation

知①=靖 (69)

one obtains

L4 ] 一 [4 L? = C此q a(r) Sconv(t - t) (70)

We compare the numerical prediction of eq. (70) with that 

obtained by numerical integration of eq. (66) written in the 

form

与 = 一旳)y(削 Cb+gw)] 냐")[1 一 no： (7i)

at

where %(f)= [A By the mean value theorem we have

where 伫 denotes a time between tt and /1+i. The value of 

知(Z?)is assumed to be given by

的睥密 0) 냐应+1)]/2 哉小 + 阳 c血) + aS i)]} (73)

The values of Y(t^) and 龙应：)are determined by a prediction­

correction algorithm. We first put
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y(T)= h°)(T)= KG) (74)

and

비二段烦)=臥心) (75)

to calculate an approximate value of Y at denoted as 

H이(4+i), from eq. (72). An approximate v지ue of kf at 

denoted as 材％，+i), is then calculated from the following 

equation:

灯(h+i)=比，q一財니:l-K緝M-r)

+ 此)+ * Keq 3<t>(T)a(r)AX^f +1 — i)

t [IT履Att + l-r)

+ ("却q狮)(76) 

where t0=Q. We have assumed that 0(0 and c血)vary much 

more smoothly with time than △(£) and △&) so that when 

the time step size is small enough they may be assumed 

to vary linearly with time in each time step. The integrals 

involving the memory kernels may be evaluated analytically 

if the expressions given by eqs. (59) and (62) are assumed 

for A(Z) and △,), respectively:

“丿十 1 Pi+i-/>
dx △(" 一 ■：)= dx A(t)

J t} Jti+i-fj+i

=W(如]一切一 WSiTe) (77)

卩喝:AX/(+i-r)= p + 1 ' dx A/r)

= W《t 一幼一必(ti 一加 i) (78)

where

乎(t)=(幻+如)(79) 

侦=噎쯔*P(*4心性Bi)

— 厂/+a 火分] (80)

where .4 = (1 + ^/^n)(Z)l/2/o) and B=D y2{csd-o) as before, 

and the function O(y) was defined by eq. (60). Values of 

©(£；) and 戏鴨)are assumed to be given by

e(g) = 0(以+ g+i)]/2 (81)

如；)=[旳)+ 応+1)]/2 (82)

The values of W仏+i) and ^/(0U+i) are then used to give 

better approximations to K(C)and 屈(f：):

W?) 三丫⑴ (f?)나口0) + 抄Si)]/2 (83)

k^t)=kf\Q =[初0)+取+1)]/2 (84)

These values of Y(t^) and k^) may then be used to obtain 

better approximations to Kft+i) and 臥払1), and so on. The 

iterative procedure is continued until the relative change 

in the value of YO is less than IO-3 or so.

Pseudo first-order case. In Figure 1, we compare the 

numerical predictions of the present theory with that of the

(
(
*
<

、
呉<
<
S
<
H
V
D
2
8
O
J

Figure 1. Keti dependence of the variation of [A] with time 

in the pseudo first-order case. Vahjes of model parameters used 

in the calculation are described in the text.

conventional theory as obtained by eq. (70). The value응 of 

input parameters o, D and 拓 are those estimated for the 

protoheme-CO system at 280 K20; 0= 1.5 A, D=9소

cm2/s, ^=5.0X1014 cm%, Cb^^SXW4 M, and Co=5.0 

X10 5 M. The value of kD is taken to be 2naD rather than 

4naZ) for the reason described by Szabo et al?\ The irradia­

tion function defined by eq. (44) is assumed to be given 

by

a(/) =fAt/tL)exp{ - -口} (85)

The value of tL representing the width of the photolytic pulse 

is set equal to 2 ps. The magnitude of the radiation intensity 

parameter f0 is adjusted such that the fraction of photolyzed 

molecules has the peak value of 0.0100 (匚4]*心 一 [ALJ/C。

= 0.0100 where L4]”心 and [」4]酒 denote the peak concentra­

tion and equilibrium concentration of A molecules, respecti­

vely). In the present theory values of additional parameters 

% and Ke(i( — ^eq/kre^ are needed. We assume that oj=a and 

the value of Keg is adjusted to fit the experimental data20. 

In Figure 1, the solid curve obtained with Keq —1.0 X105 M 1 

gives the best fit to the experimental data. It should be noted 

that the value of /, has been adjusted but that it is not a 

free parameter since it must have a fixed value to give the 

known fraction of photolyzed molecules. Since experimental 

data on the actual fraction of photolyzed molecules are n아 

available to us, we have simply assumed that ([A]林“一 L4]约) 

/Co=0.0100 in obtaining Figure 1. As Ke<l is increased with 

K fixed, the photodissociation rate constant kp(f) [ — kreifa(t)l 

decreases for a given value of f,>. Hence in order to give 

the same fraction of photolyzed m시ecules, the value of f„ 

needs to be increased as Ke(i increases. It is amusing that 

the adjusted value of K融 is in agreement with the known 

experimental value21, K妒二 5XW m i. Figure 1 shows that 

Kg should be the key parameter required in the analysis
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Figure 2. Dependence of the scaled decay curves on the inten­

sity of photolytic radiation in the pseudo first-order case. Values 

of model parameters used in the calculation are described in 

the text.
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Figure 3. Dependence of the scaled decay curves on the initial 

concentration of parent molecules in the pseudo first-order case. 

Values of model parameters used in the calculation are described

o

of the time-resolved kinetic data of photolytic experiments. 

Nevertheless, no previous theories have dealt with this as­

pect properly. Finally, the deviation of the dot-dashed curve 

in Figure 1, which is calculated by the conventional theory 

Eeq. (70)], from the experimental data shows that the con- 

voultion integral expression may not properly describe the 

data obtained using a photolytic pulse with finite width. The 

values of parameters o, D and 处 were obtained in ref.20 

from the fitting of long-time data to the expression of the 

survival probability,

Sg忠)三Ssz(t)=F/(t) FM) (86)

where

県[네쓴) M찌 (87)

FM) = 蝴―Cb(쁩뽀)g 淑+*V %

X(2(4〃n)i，2一 i + es尹J]} (88)

Figure 2 shows the effect of photolytic radiation intensity, 

gauged by the parameter f(i, with the value of K四 fixed at 

2.0X105 M-1. Values of parameters other than f0 and Keq 

are the same as in Figure 1. As the radiation intensity in­

creases, the curve decays more rapidly. Nevertheless, no 

previous theories have dealt with this aspect properly.

Figure 3 shows that the concentration effect on the decay 

curves may not be appreciable in the pseudo first-order case 

where Cb»Cg, although the curve appears to decay a little 

faster for a larger value of Co- Except that ^ = 2.0X1051VL, 

/, = 2.66X 107, and the value of Co is varied, values of other 

parameters used in the calculation are the same as in Figure 

1.

Figure 4 displays the variation of the decay curves for
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Figure 4. Dependence of the scaled decay curves on the ratio 

이o in the pseudo first-order case. Values of model parameters 

used in the calculation are described in the text.

different values of 眼 Except that Ke(i = 2.0X 105 Mf f0= 

2.66 X107, and the value of oj is varied, values of other para­

meters used in the calculation are the same as in Figure

1. As expected, a larger value of % gives the slower decay 

of A molecule concentration.

Second-order case. Figure 5 displays the decay curve옹 

of A molecule concentration in the second-order case with 

Cb = 0. The values of input parameters o, D, and 나瓣 are those 

estimated for the iodine atom recombination9-22 -26: o = 4.32
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Figure 5. dependence of the variation of [A] with time 

in the second-order case. Values of model parameters used in 

the calculation are described in the text.
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Figure 6. Dependence of the scaled decay curves on the inten­

sity of photolytic radiation in the second-order case. Values of 

model parameters used in the calculation are described in the 

text.
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Figure 7. Dependence of the scaled decay curves on the initial 

concentration of parent molecules in the second-order case. Va­

lues of model parameters used in the calculation are described 

in the text.
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Figure 8. Dependence of the scaled decay curves on the ratio 

od/o in the second-order case. Values of model parameters used 

in the calculation are described in the text.

A, £>=2.0X 10-5 cm2/s, and k^~2.0X IO11 cm3/s. We assume 

that 6=6 and the value of Keq has been varied as shown. 

The irradiation function a(Z) is assumed to be given by Eq. 

(85) with 左=5 ps. The radiation intensity parameter f0 is 

adjusted such that the fraction of photolyzed molecules has 

the peak value of 0.030 (i.e., [i41?)/C0=0.030). The

initial concentration Co of C molecules before the onset of 

photodissociation is set equal to 1.0X 10 11 M. As in the 

pseudo first-order case, the concentration of A decays faster 

as the equilibrium constant Keq increases.

Figure 6 shows the effect of photolytic radiation intensity 

on the shape of the decay curve. Except that Ke(i —1.0 X1015 

M-1 and the value of f(1 is varied as shown in the figure, 

values of other parameters used in the calculation are the 

same as in Figure 5. As the radiation intensity increases, 

the curve decays more rapidly.

Figure 7 shows that the concentration effect on the decay 

curves should be large in the second-order case. As the ini­
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tial concentration Co gets larger, the curve decays faster. 

Except that 1.0X1015 M \ /, = 1.0X 1017, and the value 

of Co is varied, values of other parameters used in the calcu­

lation are the same as in Figure 5.

Figure 8 displays the variation of the decay curves for 

different values of 眼 Except that Ke(l —1.0X1015 1.0

X1017, and the value of oj is varied, values of other parame­

ters used in the calculation are the same as in Figure 5. 

It is interesting that the scaled curve decays a little faster 

at intermediate times when the photolytic separation % is 

larger than the thermolytic separation o than when 

Another interesting observation is that the curve has a hump 

in the subpicosecond time region when Od>o. Although se­

vere experimental difficulties are expected to probe such 

a short time region, observation of the hump will provide 

a definite evidence that gp
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