DOI QR코드

DOI QR Code

Atomic Force Microscopy Study of Conducting Layered Transition Metal Ditellurides

  • Kim Sung-Jin (Department of Chemistry, Ewha Womans University) ;
  • Park So-Jung (Department of Chemistry, Ewha Womans University) ;
  • Oh Hoon-Jung (Department of Chemistry, Ewha Womans University) ;
  • Jeon, Il Cheol (Department of Chemistry, Jeonbuk National University) ;
  • Song Sunae (Department of Chemistry, Jeonbuk National University)
  • Published : 1994.12.20

Abstract

Atomic force microscopy (AFM) images of two conducting layered transition-metal ditellurides, $TaTe_2$ and $Ta_{0.5}$$V_{0.5}$$Te_2$, were examined and their surface and bulk structural features were compared. All the measured unit cell parameters from AFM image were consistent and in complete agreement with the results of the X-ray diffraction. The microscopic structures of corrugated surface tellurium sheets were strongly affected by the modification of metal double zig-zag chains underneath Te surface. Large difference in the height amplitudes of AFM images in $TaTe_2$ and $Ta_{0.5}$$V_{0.5}$$Te_2$ phases was observed and this reflects large difference in the surface electron densities of two phases. On surface, the shorter intralayer Te…Te contacts in $TaTe_2$ induce more electron transfer from Te p-block bands to Ta d-block bands, thus electron density on surface observed in $TaTe_2$ is much lower than that of $Ta_{0.5}$$V_{0.5}$$Te_2$. However, in bulk, interlayer Te…Te contacts in V substituted phase are shorter than those in $TaTe_2$ phase, thus tellurium-to-metal electron transfer occurs more easily in $Ta_{0.5}$$V_{0.5}$$Te_2$ phase.

Keywords

References

  1. Scanning Tuneling Microscopy v.Ⅰ;Ⅱ Wiesendanger, R(ed.).;Guntherodt, H. J.(ed.)
  2. Scanning Tuneling Microscopy and Related techniques Behm, J.(ed.);Garcia, N. Rohrer, H.(ed.)
  3. J. Am. Chem. Soc. v.111 Wu, X. L.;Lieber, C. M.
  4. J. Phys. Chem. v.93 Kelty, S. P.;Lieber, C. M.
  5. Acc. Chem. Res. v.24 Lieber, C. M.;Wu, X. L.
  6. J. Am. Chem. Soc. v.112 Chen, H.;Wu, X. L.;Lieber, C. M.
  7. J. Phys. Chem. Solid v.52 Sakami, K.;Fujishima, A.;Onuki, Y.
  8. J. Phys. Chem. v.97 Ren, J.;Whangbo, M. H.
  9. Chem. Mater. v.5 Ren, J.;Whangbo, M. H.;Bengel, H.;Cantow, H. J.;Magonov, S. N.
  10. J. Am. Chem. Soc. v.115 Whangbo, M. H.;Ren, J.;Canadell, E.;Louder, D.;Parkinson, B. A.;Bengel, H.;Magonov, S. N.
  11. J. Am. Chem. Soc. v.113 Parkinson, B. A.;Ren, J.;Whangbo, M. H.
  12. J. Am. Chem. Soc. v.115 Mogonov, S. N.;Zonchen, P.;Rotter, H.;Cantow, H. J.;Thiele, G.;Ren, J.;Whangbo, M. H.
  13. Structural Chemistry of Layer-Type Phase Hulliger, F.;Levy, F.(Ed.)
  14. Intercalation in Layered Materials Ghorayeb, A. M.;Liang, W. Y.;Toffe, A. D.;Dresselhaus, M. S.(Ed.)
  15. J. Am. Chem. Soc. v.114 Whangbo, M. H.;Canadell, E.
  16. Science v.252 Whangbo, M. H.;Canadell, E.;Foury, P.;Pouget, J. P.
  17. Inorg. Chem. v.32 Rovira, C.;Whangbo, M. H.
  18. Advances in Physics v.24 Wilson, J. A.;Disalvo, F. J.;Mahajan
  19. Phil. Mag. v.29 Williams, P. M.;Parry, G. S.;Scruby, C. B.
  20. Phys. Rev. Lett. v.34 Thompson, A. H.
  21. Acta. Cryst. v.20 Brown, B. E.
  22. J. Solid State Chem. v.53 Bronsema, K. D.;Bus, G. W.;Wiegers,
  23. J. Solid State Chem. v.99 Canadell, E.;Jobic, S.;Brec, R.;Rouxel, J.;Whangbo, M. H.
  24. J. Less-Common Met. v.8 Revolinsky, E.;Brown, B. E.;Beernsten, D. J.;Amitage, C. H.
  25. J. Solid State Chem. v.96 Jobic, S.;Brec, R.;Rouxel, J.
  26. J. Am. Chem. Soc. v.114 Mar, A.;Jobic, S.;Ibers, J. A.

Cited by

  1. Structural, electrical, and thermoelectric properties of distorted 1T-Ta 1−x Nb x Te 2 single crystals vol.109, pp.1, 1994, https://doi.org/10.1209/0295-5075/109/17003
  2. Monolayer Modification of VTe2 and Its Charge Density Wave vol.10, pp.None, 1994, https://doi.org/10.1021/acs.jpclett.9b01949