DOI QR코드

DOI QR Code

Selective Dimerization and Cyclotrimerization of Phenylacetylene with Rhodium and Iridium Complexes

  • Published : 1994.11.20

Abstract

Oligomerization of phenylacetylene is catalyzed by $Rh(ClO_4)(CO)(PPh_3)_2$ (Rh-1), $[Rh(CO)(PPh_3)_3]ClO_4$ (Rh-2), $[Rh(COD)L_2]ClO_4 (L_2=(PPh_3)_2$, Rh-3; $(PPh_3)(PhCN)$, Rh-4; $(PhCN)_2$, Rh-5), $[Rh(C_3H_5)(Cl)(CO)(SbPh_3)_2]ClO_4$ (Rh-6), $[Ir(COD)L_2]ClO_4 (L_2=(PPh_3)_2$, $Ir-1; (PPh_3)(PhCN)$, $Ir-2; (PhCN)_2$, Ir-3; (AsPh_3)(PhCN)$, $Ir-4; Ph_2PCH_2CH_2PPh_2$, Ir-5; COD, Ir-6 and 2,2'-dipyridyl, Ir-7), $Ir(ClO_4)(CO)(PPh_3)_2$, $Ir-8, [Ir(PhCN)(CO)(PPh_3)_2]ClO_4$, Ir-9 to produce dimerization products, 1,3-diphenylbut-1-yn-3-ene, 1, (E)-1,4-diphenylbut-1-yn-3-ene, 2 and (Z)-1,4-diphenylbut-1-yn-3-ene, 3, and cyclotrimerization products, 1,3,5-triphenylbenzene, 4 and 1,2,4-triphenylbenzene, 5. Product distribution of the oligomers varies depending on various factors such as the nature of catalysts, reaction temperature, counter anions and excess ligand present in the reaction mixtures. Increasing reaction temperature in general increases the yield of the cyclotrimerization products. Exclusive production of dimer 1 and trimer 4 can be obtained with Ir-1 at 0 $^{\circ}$C and with Ir-2 in the presence of excess PhCN (or $CH_3CN$) at 50 $^{\circ}$C, respectively. Dimer 2 (up to 81%) and trimer 5 (up to 98%) are selectively produced with Rh-1 at 50 and 100 $^{\circ}$C respectively. Production of 3 is selectively increased up to 85% by using $PF_6$- salt of $[Ir(COD)(PPh_3)_2]$+ at 25 $^{\circ}$C. Addition of $CH_3I$ to Rh-1 produces $CH_3PPh_3^+I-$ and increases the rate of oligomerization(disappearance of phenylacetylene). Among the metal compounds investigated in this study, Ir-1 catalyzes most rapidly the oligomerization where the catalytically active species seems to contain lr(PPh3)2 moiety. The stoichiometric reaction of phenylacetylene wth Ir-9 at 25 $^{\circ}$C quantitatively produces hydridophenyl-ethynyl iridium(III) complex, $[lr(H)(C{\equiv}CPh)(PhCN)(CO)(PPh_3)_2]ClO_4$ (Ir-11), which seems to be an intermediate for the oligomerization.

Keywords

References

  1. J. Am. Chem. Soc. v.53 Nieuwland, J. A.;Calcott, W. S.;Downing, F. B.;Catter, A, S.
  2. J. Org. Chem. v.27 Meriwhether, L. S.;Leto, M. F.;Kennerley, G. W.
  3. Chem. Commum. Kern, R. J.
  4. J. Chem. Soc. (A) Singer, H.;Wilkinson, G.
  5. J. Chem. Soc. Perkin I Carlton, L.;Read, G.
  6. Organometallics v.10 Heeres, H. J.;Teuben, J. H.
  7. Chem. Commum. Horton, A. D.
  8. Organometallics v.6 Berry, H. H.;Eisenberg, R.
  9. J. Chem. Soc. Akhter, M.;Richards, T. A.;Weedon, B. C. L.
  10. J. Am. Chem. Soc. v.83 Lutz, E. F.
  11. Chem. Ber. v.93 Hubel, W.;Hoogzand, C.
  12. J. Org. Chem. v.33 Donda, A. F.;Moretti, G. J.
  13. J. Am. Chem. Soc. v.92 Dieti, H.;Reinheimer, H.;Moffatm, J.;Maitlis, P. M.
  14. Bull. Chem. Soc. Jpn. v.53 Masuda, T.;Mouri, T.;Higashimura, T.
  15. Acc. Chem. Res. v.17 Masuda, T.;Higashimura, T.
  16. Tetrahedron Lett. v.25 Kumar, V. G.;Shoba, T. S.;Rao, K. V. G.
  17. Principles and Applicarions of Organotransition Metal Chemistry no.Chap. 9;Chap. 18 Collman, J. P.;Hegedus, L. S.;Norton, J. R.;Finke, R. G.
  18. J. Am. Chem. Soc. v.112 Strickler, J. R.;Bruck, M. A.;Wigley, D. E.
  19. J. Chem. Soc. v.113 Bianchini, C.;Caulton, K. G.;Chardon, C.;Einstein, O.;Folting, K.;Jhonson, T. J.;Meli, A.;Peruzzini, M.;Rauscher, D. J.;Streib, W. E.;Vizza, W. E.
  20. J. Am. Chem. Soc. v.114 Lambregts, M. J.;Munson, E. J.;Kheir, A. A.;Haw, J. F.
  21. Angew. Chem. Int. Ed. v.10 Peone, J. Jr.;Vaska, L.
  22. J. Chem. Soc. Dalton Trans. Chin, C. S.;Lee, B.
  23. J. Chem. Soc. (A) Green, M.;Kuc, T. A.;Taylor, S. H.
  24. Suom. Kemistil. v.B44 Vaska, A.;Peone, J. Jr.
  25. J. Organomat. Chem. Soc. v.179 Weinberg, E. L.;Baird, M. C.
  26. J. Am. Chem. Soc. v.103 Kampmeier, J. A.;Harris, S. H.;Rodehorst, R. M.
  27. Inorg. Chem. v.32 Chin, C. S.;Yoon, J.;Song, J.
  28. Chem. Commum. Marder, M. A.;Zargarian, D.;Calabrese, J. C.;Herskovitz, T. H.;Milstein, D.
  29. Organometallics v.7 Bianchini, C.;Laschi, F.;Ottaviani, F.;Pereuzzini, M.;Zanello, P.
  30. Chem. Commum. Chow, P.;Zagarian, D.;Taylor, N. J.;Marder, T. B.
  31. Organometallics v.29 Bianchini, C.;Mas, D.;Meli, A.;Peruzzini, M.;Ramirez, J. A.;Vacca, A.;Zanobini, F.
  32. Organometallics v.10 Boese, W. T.;Goldman, A. S.
  33. Chem. Commum. Schafer, M.;Wolf, J.;Werner, H.
  34. Organometallics v.11 Esteruelas, M. A.;Lahoz, F. J.;Lopez, J. A.;Oro, L. A.;Schluunken, C.;Valero, C.;Werner, H.
  35. J. Chem. Soc. Perkin Trans. I Grigg, R.;Scott, R.;Stevenson, P.
  36. Organometallics v.7 Strickler, J. R.;Wexsler, P. A.;Wiegley, E.
  37. Organometallics v.10 Bianchini, C.;Masi, D.;Meli, A.;Peruzzini, M.;Vacca, A.;Vizza, F.
  38. J. Am. Chem. Soc. v.113 Bianchini, C.;Cauton, K. G.;Chardon, C.;Einstein, O.;Folting, K.;Johnson, T. J.;Meli, A.;Peruzzini, M.;Rauscher, D. J.;Stribe, W. E.;Vizza, F.
  39. Organometallics v.11 Omori, H.;Suzuki, H.;Kakigono, T.;Moro-oka, Y.
  40. J. Chem. Educ. v.55
  41. J. Am. Chem. Soc. v.114 Yeh, W.-Y.;Liu, L.-K.
  42. Organometallics v.12 Hill, J. E.;Ballaich, G.;Fanwick, P. E.;Rothwell, I. P.
  43. Chem. Eng. News v.61
  44. Chem. Eng. News v.41
  45. J. Organomet. Chem. v.179 Uson, R.;Oro, L. A.;Artigas, J.;Sariego, R.
  46. J. Chem. Soc. Dalton Trans. Chin, C. S.;Shin, S. Y.;Lee, C.
  47. J. Org. Chem. v.29 Doss, R. C.;Solomon, P. W.
  48. Chem. Commum. Yamazaki, H.
  49. Organometallics v.10 St. Clair, M.;Schaefer, W. P.;Bercaw, J. E.
  50. Organometallics v.11 Billeb, G.;Brauer, H.;Neumann, W. P.;Weisbeck, M.
  51. Organometallics v.11 Rappert, T.;Nurmberg, O.;Mahr, N.;Wolf, J.;Werner, H.
  52. Organometallics v.10 Bianchini, C.;Meli, A.;Peruzzini, M.;Vacca, A.;Vizza, F.
  53. Organometallics v.11 Pope, R. M.;Vanorden, S. L.;Cooper, B. T.;Bucker, S. W.
  54. J. Am. Chem. Soc. v.113 Jacobsen, E. N.;Zhang, W.;Muci, A. R.;Ecker, J. R.;Deng, L.

Cited by

  1. Facile insertion of alkynes into Ir–P (phosphine) and Ir–as (arsine) bonds: second and third alkyne addition to mononuclear iridium complexes vol.1995, pp.15, 1994, https://doi.org/10.1039/c39950001495
  2. ChemInform Abstract: Selective Dimerization and Cyclotrimerization of Phenylacetylene with Rhodium and Iridium Complexes. vol.26, pp.32, 1995, https://doi.org/10.1002/chin.199532082
  3. Iridium-catalyzed formation of trans-polyphenylacetylene by alkyne polymerization vol.206, pp.1, 1994, https://doi.org/10.1016/s1381-1169(03)00415-1
  4. Directing iridium-catalyzed C–C bond formation by selection of the ancillary ligands: Polymerization and cyclotrimerization of alkynes vol.363, pp.3, 1994, https://doi.org/10.1016/j.ica.2009.03.030
  5. Pyridine‐Enhanced Head‐to‐Tail Dimerization of Terminal Alkynes by a Rhodium–N‐Heterocyclic‐Carbene Catalyst vol.19, pp.45, 1994, https://doi.org/10.1002/chem.201302079
  6. Cyclotrimerization of Terminal Alkynes Catalyzed by a Phosphine-Free Chloro(1,5-cyclooctadiene)iridium(I) Dimer and Induced by Tin(II) Chloride vol.2, pp.9, 1994, https://doi.org/10.1002/ajoc.201300132
  7. A molecular porous zirconium–organic material exhibiting highly selective CO2 adsorption, high thermal stability, reversible hydration, facile ligand exchange and exclusive dimerizati vol.16, pp.25, 1994, https://doi.org/10.1039/c4ce00253a