Preparation and Structure of $\operatorname{Re}\left(\equiv \mathbf{N C}_{6} \mathbf{H}_{5}\right)\left(\mathbf{P P h}_{3}\right)\left(\mathbf{P R}_{3}\right) \mathrm{Cl}_{3}$, $\mathbf{P R}_{3}=\mathbf{P M e}_{3}, \mathbf{P}(\mathbf{O M e})_{3}$

Young-woong Kim, June-ho Jung, Hee-sook Park, and Soon W. Lee*
Department of Chemistry, Sung Kyun Kwan University, Sutvon 440-746, Korea Received July 16, 1994

Abstract

Reactions of mer, trans-Re($\left.\equiv \mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}$, $\mathbf{1}$, with PMe_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$ at room temperature, led to mer, trans-Re $\left(=\mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{3}$, $\mathbf{1}$, and fac-Re($\left.=\mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}_{(0 \mathrm{OMe}}^{3}\right.$) Cl_{3}, III, respectively. The crystal structures of II and III were determined through X-ray diffraction. II crystallizes in the orthorhombic system, space group Pna2 ${ }_{1}$ with cell parameters $a=19.379(4) \AA, b=11.867(2) \AA, c=12.676(3) \AA$, and $Z=4$. Least-squares refinement of the structure led to a $R\left(w R_{2}\right)$ factor of $0.0251(0.0621)$ for 2203 unique reflections of $I>2 \sigma(1)$ and for 306 variables. III crystallizes in the monoclinic system, space group $P 2_{1} / n$ with cell parameters $a=11.399(3) \AA, b=14.718(4) \AA . c=17.558(5) \AA$, $\beta=97.79(2)^{\circ}$, and $Z=4$. Least-squares refinement of the structure led to a $R\left(w R_{2}\right)$ factor of 0.0571 (0.1384) for 3739 unique reflections of $I>2 \sigma(\mathbb{I})$ and for 344 variables. Structural studies showed that the relative orientations of the two phosphines in both complexes are different, probably due to the differences in the coordinating abilities between PMe_{3} and $\mathrm{P}(\mathrm{OMe})_{5}$ to the 5 -coordinate fluxional intermediate.

Introduction

Since 1959 transition-metal imido (or nitrene) complexes have been reported, including derivatives of Group $4-8$ metals, and have attracted continuous interest.' They have been postulated to be important intermediates in a several industrial catalytic processes. ${ }^{2-4}$ Bergman and his workers recently reported an insertion of CO into an $\mathrm{Ir} \equiv \mathrm{N}$ bond in $\mathrm{Cp}^{*} \mathrm{Ir}$ $\left(\equiv \mathrm{N}^{\mathrm{B}} \mathrm{Bu}\right)\left(\mathrm{Cp}^{*}=\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right)$, which is the first carbonylation of a terminal imido ligand to give an isocyanate complex. ${ }^{5}$ Very recently, our group reported the preparation and structure of fac- $\mathrm{Re}(\equiv \mathrm{NPh})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}$, by treating mer, trans $-\mathrm{Re}(\equiv$ $\mathrm{NPh})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}$, I, with CO Eq. (1). ${ }^{6}$ Our initial purpose in that experiment is to induce an insertion of CO into a $\mathrm{Re} \equiv \mathrm{N}$ bond to transform a terminal nitrene into an isocyanate group. The results of studies, however, revealed that the product results from substitution instead of insertion. We decided to modify the ligand environments of I by replacing PPh_{3}, with the smaller ligands, PMe_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$, possessing the better coordinating ability. We report here the preparations and structures of mer, trans-Re $\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)$ $\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{3}$, II, and fac-Re($\left.\equiv_{\left.\mathrm{NC}_{6} \mathrm{H}_{5}\right)}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{3}$, II, and fac-Re($\left.\equiv \mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{Cl}_{3}$, III.

Experimental

Unless otherwise stated, all the reactions have been performed with standard Schlenk line and cannula techniques under an argon atmosphere. Air-sensitive solids were manipulated in a glove box filled with an argon gas. Glassware was either flame-dried or oven-dried. Benzene, diethyl ether,
tetrahydrofuran (THF), and hydrocarbon solvents were stirred over sodium metal and distilled under vacuum. NMR solvents ($\mathrm{C}_{6} \mathrm{D}_{6}$ and CDCl_{3}) were freeze-pump-thaw degassed before use and stored over molecular sieves under argon. Aniline was distilled from CaH_{2} and stored under argon. Re , trimethylphosphine ($\mathrm{PMe}_{3} ; \mathrm{Me}=\mathrm{CH}_{3}, 1 \mathrm{M}$ in toluene), trimethylphosphite ($\mathrm{P}(\mathrm{OMe})_{3}$), and triphenylphosphine (PPh_{3}; $\mathrm{Ph}=\mathrm{C}_{6} \mathrm{H}_{5}$) were purchased from Aldrich Co. and used as received. $\operatorname{Re}\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}_{3}$, I, was prepared by the literature method. ${ }^{7}$
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with a Hitach 1100 $60-\mathrm{MHz}$ spectrometer and a Varian $200-\mathrm{MHz}$ spectrometer with reference to tetramethylsilane. IR spectra were recorded with a Nicolet 205 FTLR spectrophotometer. Melting points were measured with a Thomas Hoover capillary melting point apparatus without calibration. Elemental analyses have been performed by Korea Basic Science Center.

Preparation of $\operatorname{Re}\left(\equiv \mathrm{NC}_{6} \mathbf{H}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{\mathbf{3}}$, II. 0.30 $\mathrm{g}(0.33 \mathrm{mmol})$ of I and $0.66 \mathrm{~m} /(0.66 \mathrm{mmol})$ of $\mathrm{PMe}_{3}(1.0$ M in toluene) in 60 m ' of benzene were stirred for 36 h at room temperature, and then the solvent was removed under vacuum. The resulting green oily product had been stirred in diethyl ether (30 ml) for 2 h at room temperature to give green solids. The resulting solids were filtered, washed with benzene ($30 \mathrm{ml} \times 1$) and hexanes ($30 \mathrm{ml} \times 3$), and then dried under vacuum to give 0.10 g ($0.13 \mathrm{mmol}, 39.4 \%$) of II. The product recrystalized from acetone/hexanes. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.650\left(9 \mathrm{H}, \mathrm{dd},{ }^{2} J_{\mathrm{P} \cdot \mathrm{H}}=10.87 \mathrm{~Hz},{ }^{4} /_{\mathrm{P} \cdot \mathrm{H}}=1: 22\right.$ Hz, PMe ${ }_{3}$), $7.007-7.858(20 \mathrm{H}, \mathrm{m}),{ }^{13} \mathrm{C}\{\mathrm{H}\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $12.96\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{p} . \mathrm{c}}=138 \mathrm{~Hz}, \mathrm{PMe}_{3}\right), 121.20,127.79,127.99,128.52$, 129.59, 130.13, 134.63, 134.81. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NP}_{2} \mathrm{Cl}_{3} R \mathrm{Re}$: C. 44.91 ; H, 4.06; N, 1.94. Found: C, 44.62; H, 4.16; N, 1.97. $\mathrm{mp} .=178-180^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{KBr}) ; 3057,1482,1435,1413,1283$, 1093, 1025, 957, 767, 746, 695, 525, 513, $494 \mathrm{~cm}^{-1}$.

Preparation of $\operatorname{Re}\left(\equiv \mathrm{NC}_{6} \mathrm{H}_{5}\right)\left(\mathbf{P P h}_{3}\right)\left(\mathbf{P}\left(\mathrm{OMe}_{3}\right) \mathrm{Cl}_{3}\right.$, III. 0.30 g (0.33 mmol) of I and $0.79 \mathrm{ml}^{\prime}(6.6 \mathrm{mmol})$ of $\mathrm{P}(\mathrm{OMe})_{3}$ in $60 \mathrm{~m} /$ of benzene were stirred for 36 h at room temperature. The resulting solution was concentrated to about 20 m ' to precipitate the product as silvery blue solids. The so-

Table 1. Crystallographic Data and Summary of Data Collection and Structure Refinement

	II	111
Formula	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NP}_{2} \mathrm{Cl}_{3} \mathrm{Re}$	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{Re}$
$f w$	722.00	770.00
Crystal system	Orthorhombic	Monoclinic
Space group	Pna2 ${ }_{1}$	$P 21 / n$
a. \AA	19.379(4)	11.399(3)
b, \AA	11.867(2)	14.718(4)
c. \AA	12.676(3)	17.558(5)
β, deg		97.79(2)
V, \AA^{3}	2915(1)	2917(1)
$d_{\text {cosk }} \mathrm{g} \mathrm{cm}^{-3}$	1.645	1.752
μ, mm^{-1}	4.570	4.578
$\mathrm{F}(000)$	1416	1512
Z	4	4
Scan range	$3<2 \theta<50$	$3<2 \theta<50$
Scan type	${ }_{0}$-2 2θ	ω-20
No. of unique data	2226	3868
No. of reflns	2203	3739
Used, $I>2 \sigma(I)$		
No. of params	306	344
Max. in $\Delta \rho$ (e A^{3})	0.98	1.00
GOF on F^{2}	1.041	1.050
R	0.0251	0.0571
$w R_{2}{ }^{\text {a }}$	0.0621	0.1384

${ }^{s}{ }_{w} R_{z}=\left\{\Sigma\left[w\left(F_{a}^{e}-F_{g}\right)^{2}\right] /\left.\Sigma\left[w\left(F_{o}^{v}\right)^{2}\right]\right|^{1 / 2}\right.$.
lids were filtered, washed with benzene ($30 \mathrm{ml} \times 1$), diethyl ether ($30 \mathrm{~m} / \times 1$), and hexanes ($30 \mathrm{~m} / \times 1$), and then dried under vacuum to give $0.09 \mathrm{~g}(0.12 \mathrm{mmol}, 36.4 \%)$ of III. The product recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexanes. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 3.690\left(9 \mathrm{H}, \mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{P} \cdot \mathrm{H}}=10.43 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{3}\right), 7.078-7.893(20 \mathrm{H}$, m). ${ }^{13} \mathrm{C}|\mathrm{H}| \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 55.67\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{PC}}=34 \mathrm{~Hz}, \mathrm{P}(\mathrm{OMe})_{3}\right)$, $125.69,128.36,128.57,129.65,130.50,131.15,131.20,133.79$, $134.83,135.50,135.68$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{P}_{2} \mathrm{Cl}_{3} \mathrm{Re}: \mathrm{C}$, 42.11; H, 3.80; N, 1.82. Found: C, 41.77: H, 3.71; N, 1.65. $\mathrm{mp} .=176-178^{\circ} \mathrm{C}$ (decom.). IR (KBr); 3063, 2953, 1482, 1436, 1186, 1173, 1092, 1063, 1036, 1010, 810, 795, 770, 746, 692, 564, $525 \mathrm{~cm}^{-1}$.

X-ray Structure Determination. All X-ray data were collected with use of an Enraf-Noinus CAD4 automated diffractometer equipped with a Mo X-ray tube and a graphite crystal monochromator. Details on crystal and intensity data are given in Table 1. The orientation matrix and unit cell parameters were determined from 25 machine-centered reflections with $20<2 \theta<30^{\circ}$. Axial photographs were used to verify the unit cell choice. Intensities of three check reflections were monitored after èvery lh during data collection. Data were corrected for Lorentz and polarization effects. Decay corrections were made. The intensitiy data were empirically corrected with Ψ-scan data. All calculations were carried out on the personal computer with use of the SHELXS86^{8} and SHELXL-93 programs.

A green crystal of II, shaped as a block, of approximate dimensions $0.3 \times 0.3 \times 0.4 \mathrm{~mm}$, was used for crystal and intensity data collection. The unit cell parameters and systematic

Table 2. Atomic Coordinates ($\times 10^{0}$) and equivalent Isotropic Thermal Parameters $\left(\AA^{2} \times 10^{3}\right)$ for II

	x	y	2	$U(e q)^{\text {a }}$
Re	9337 (1)	7639 (1)	10000 (0)	27(1)
CL1	9292 (3)	7567 (6)	8109 (6)	38(2)
CL2	9301 (4)	7547 (7)	11926 (8)	55(2)
CL3	8537(.8)	6074 (1)	10024 (6)	39(1)
P1	10179 (1)	6131 (2)	9981 (7)	36(1)
P2	8351(.9)	9001 (2)	9984 (6)	27(1)
N	9972 (3)	8638 (5)	9956(15)	32(2)
Cl	10141(10)	$5208(19)$	8912(13)	$60(7)$
C2	11059 (4)	6643 (8)	10183(14)	44(3)
C3	10143(11)	5191(16)	11149(14)	63(7)
C11	8782 (4)	10352 (6)	$9988(23)$	33(2)
C12	9016 (9)	10912(15)	9044 (14)	31(4)
C13	9442(10)	11745(18)	9155(24)	64(8)
C14	9633 (5)	12250 (7)	10037(31)	77(4)
C15	$9403(11)$	11836(23)	11023(24)	65(7)
C16	8980(11)	10765(18)	10900(18)	59(7)
C21	$7758(10)$	9113(18)	11139(17)	50(6)
C22	7393(10)	10035(16)	11472(16)	31(4)
C23	6915(11)	9993(24)	12282(22)	$51(6)$
C24	6793(12)	8985(29)	12788(19)	60(7)
C25	7149(11)	8043(22)	12384(17)	49(5)
C26	7627(11)	8125(20)	11691(18)	$53(6)$
C31	7761 (6)	8997(13)	8898(12)	18(3)
C32	$7578(10)$	8014(14)	8408(15)	34(5)
C33	7125 (8)	8073(23)	7455(16)	42(5)
C34	6860(11)	9108(26)	7243(15)	50(6)
C35	7019(11)	10061(23)	7765(23)	49(6)
C36	7486(11)	10036(22)	8611(17)	48(6)
C41	10521 (4)	9388 (7)	9922(23)	$32(4)$
C42	10780(10)	9789(15)	11071(12)	40(3)
C43	10811(13)	9683(24)	9224(15)	81(8)
C44	11305(13)	10589(21)	11022(22)	$68(6)$
C45	11644 (6)	10765(11)	10036(24)	100(7)
C46	11405(12)	10307(20)	9157(22)	73(7)

${ }^{\text {a }}$ Equivalent isotropic U defined as one-third of the trace of the orthogonalized U_{n} tensor.
absences, $h 00(h=2 n+1), 0 k 0(k=2 n+1), 00 l(l=2 n+1), 0 k l$ $(k+l=2 n+1)$, and $h 0 l(h=2 n+1)$, indicated two possible space groups: $P n a 2_{1}$ and Pnam. A statistical analysis of intensities suggested a noncentrosymmetric space group, and the structure converged only in the space group Pna2 ${ }_{1}$. The structure was solved by the heavy atom methods. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined using a riding model.

A blue crystal of III, shaped as a block, of approximate dimensions $0.2 \times 0.3 \times 0.3 \mathrm{~mm}$, was used for crystal and intensity data collection. The unit cell parameters and systematic absences, $h 00(h=2 n+1), 0 k 0(k=2 n+1), 00(l=2 n+1)$, and $h 0 l\left(h+l^{\prime}=2 n+1\right)$, unambiguously indicated $P 2_{1} / n$ as a space group. The structure was solved by the heavy atom methods. All non-hydrogen atoms were refined anisotropically. All hy-

Table 3. Atomic Coordinates ($\times 10^{0}$) and Equivalent Isotropic Thermal Parameters ($\AA^{2} \times 10^{3}$) for III

	x	y	z	$U(e q)$
Re	$-882(1)$	$3384(1)$	$7109(1)$	$29(1)$
C11	$-1719(2)$	$2264(2)$	$7887(2)$	$43(1)$
C12	$-563(3)$	$2127(2)$	$6276(2)$	$47(1)$
C13	$-2837(3)$	$3471(2)$	$6364(2)$	$61(1)$
P1	$1095(2)$	$3045(2)$	$7805(2)$	$28(1)$
P2	$-1460(2)$	$4243(2)$	$8143(2)$	$33(1)$
O1	$-1205(7)$	$5285(5)$	$8032(4)$	$42(2)$
O2	$-2770(6)$	$4202(6)$	$8338(5)$	$50(2)$
O3	$-753(6)$	$3965(6)$	$8942(4)$	$44(2)$
N	$-413(7)$	$4327(6)$	$6664(5)$	$32(2)$
C1	$-1436(11)$	$5963(8)$	$8591(7)$	$48(3)$
C2	$-3752(11)$	$4654(11)$	$7884(9)$	$69(4)$
C3	$-1198(17)$	$3785(14)$	$9628(11)$	$101(6)$
C11	$2256(9)$	$2890(7)$	$7188(6)$	$33(2)$
C12	$3385(9)$	$2648(8)$	$7543(6)$	$41(3)$
C13	$4333(9)$	$2606(9)$	$7100(7)$	$48(3)$
C14	$4151(10)$	$2801(8)$	$6331(7)$	$44(3)$
C15	$3010(10)$	$3046(8)$	$5977(7)$	$39(3)$
C16	$2069(8)$	$3090(7)$	$6402(6)$	$29(2)$
C21	$1825(8)$	$3899(7)$	$8470(5)$	$29(2)$
C22	$2605(11)$	$3646(8)$	$9103(7)$	$43(3)$
C23	$3314(11)$	$4321(8)$	$9533(7)$	$49(3)$
C24	$3197(10)$	$5198(9)$	$9310(7)$	$50(3)$
C25	$2394(10)$	$5466(8)$	$8675(7)$	$43(3)$
C26	$1714(9)$	$4811(7)$	$8261(6)$	$32(2)$
C31	$1105(8)$	$1984(7)$	$8348(6)$	$30(2)$
C32	$834(11)$	$1958(8)$	$9095(6)$	$42(3)$
C33	$745(11)$	$1150(9)$	$9454(7)$	$52(3)$
C34	$915(11)$	$345(9)$	$9089(8)$	$53(3)$
C35	$1159(10)$	$357(7)$	$8344(7)$	$44(3)$
C36	$1252(10)$	$1169(7)$	$7982(7)$	$36(2)$
C41	$-272(9)$	$5166(7)$	$6314(6)$	$33(2)$
C42	$707(9)$	$5306(8)$	$5927(7)$	$40(3)$
C43	$807(12)$	$6114(9)$	$5546(7)$	$53(3)$
C44	$-48(12)$	$6781(8)$	$5532(7)$	$51(3)$
C45	$-989(12)$	$6641(9)$	$5936(8)$	$55(3)$
C46	$-1120(10)$	$5835(8)$	$6311(7)$	$49(3)$

${ }^{*}$ Equivalent isotropic U defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
drogen atoms were positioned geometrically and refined using a riding model.

Final atomic positional parameters for non-hydrogen atoms are shown in Table 2 and 3. The selected bond distances and bond angles are shown in Table 4 and 5; anisotropic thermal parameters, hydrogen atom coordinates, full bond distances and bond angles, and tables of observed and calculated structure factors are available as supplementary materials.

Results and Discussions

Preparation of II and III. Mer, trans- $\mathrm{Re}\left(\mathrm{NPh}_{4}\right) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}$,

Table 4. Selected Bond Distances (\AA) and Bond Angles (deg) for II

Bond			
Distances			
RE-CL1	$2.400(7)$	RE-CL2	$2.445(10)$
RE-CL3	$2.419(2)$	RE-P1	$2.421(2)$
RE-P2	$2.503(2)$	RE-N	$1.711(6)$
P1-C1	$1.74(2)$	P1-C2	$1.83(.8)$
P1-C3	$1.85(2)$	P2-C11	$1.82(.7)$
P2-C21	$1.86(2)$	P2-C31	$1.79(1)$
N-C41	$1.39(1)$		
Bond			
Angles			
CL2-RE-CL1	$174.1(1)$	CL3-RE-CL1	
CL3-RE-CL2	$86.3(2)$	P1-RE-CL1	$87.8(2)$
P1-RE-CL2	$89.8(3)$	P1-RE-CL3	$89.3(3)$
P2-RE-CL1	$89.3(2)$	P2-RE-CL2	$90.9(1)$
P2-RE-CL3	$90.4(1)$	P2-RE-P1	$172.5(1)$
N-RE-CL1	$91.1(7)$	N-RE-CL2	$94.8(7)$
N-RE-CL3	$173.7(2)$	N-RE-P1	$91.5(2)$
N-RE-P2	$95.8(2)$	C11-P2-RE	$102.8(2)$
C21-P2-RE	$120.7(7)$	C31-P2-RE	$119.5(6)$
C41-N-RE	$176.0(6)$		

Table 5. Selected Bond Distances (\AA) and Bond Angles (deg) for 111

Bond			
Distances			
RE-CL1	$2.419(3)$	RE-CL2	$2.416(3)$
RE-CL3	$2.430(3)$	RE-P1	$2.465(3)$
RE-P2	$2.377(3)$	RE-N	$1.710(8)$
P1-C11	$1.833(10)$	P1-C21	$1.836(11)$
P1-C31	$1.829(10)$	P2-O1	$1.578(8)$
P2-O2	$1.578(7)$	P2-O3	$1.575(8)$
O1-C1	$1.45(1)$	O2-C2	$1.45(2)$
O3-C3	$1.40(2)$	N-C41	$1.40(1)$
	Bond		Angles
CL2-RE-CL1	$85.6(1)$	CL3-RE-CL1	$86.4(1)$
Cl3-RE-CL2	$85.2(1)$	P1-RE-CL1	$89.2(1)$
P1-RE-CL2	$86.7(1)$	P1-RE-CL3	$171.1(1)$
P2-RE-CL1	$76.1(1)$	P2-RE-CL2	$161.6(1)$
P2-RE-CL3	$93.1(1)$	P2-RE-P1	$93.4(1)$
O1-P2-RE	$110.4(3)$	O2-P2-RE	$121.0(3)$
O3-P2-RE	$112.4(3)$	N-RE-CL1	$168.7(3)$
N-RE-CL2	$105.5(3)$	N-RE-CL3	$91.9(3)$
N-RE-P1	$93.9(3)$	N-RE-P2	$92.9(3)$
C11-P1-RE	$114.7(4)$	C21-P1-RE	$118.8(3)$
C31-P1-RE	$111.8(3)$	C41-N-RE	$167.9(7)$

I, reacted with PMe_{3} at room temperature to give mer, trans$\mathrm{Re}(\mathrm{NPh})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PMe}_{3}\right) \mathrm{Cl}_{3}$, II, which recrystallized from acetone/hexanes Eq. (2). II is air-stable in a solid form but unstable in solutions. For instance, II changed its color from green to brown after 48 h in such solvents as dichloromethane and benzene. This situation was also observed for the complex fac- $\mathrm{Re}\left(\mathrm{NPh}_{\mathrm{H}}\right)\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{Cl}_{3}$ which was previously prepared by our group. ${ }^{6} \mathrm{Fac}-\mathrm{Re}(\mathrm{NPh})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}\left(\mathrm{OMe}_{3}\right) \mathrm{Cl}_{3}\right.$. III,
was obtained by a similar reaction, and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexanes Eq. (3). III was originally prepared by reacting $\operatorname{Re}(\mathrm{O})\left(\mathrm{PPh}_{3}\right)(\mathrm{P}(\mathrm{OMe}))_{3} \mathrm{Cl}_{3}$ with aniline. ${ }^{10} \mathrm{III}$ also appeared to be unstable in such solvents as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF.
mer, trans- $\mathrm{Re}\left(\mathrm{NPh}^{2}\right) \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{PMe}_{3}$

$$
\longrightarrow \text { mer, trans-Re(NPh)(P(Ph})\left(\mathrm{PMe}_{3} \mathrm{Cl}_{3},\right.
$$

mer, trans $-\mathrm{Re}\left(\mathrm{NPh}^{2} \mathrm{Cl}_{3}\left(\mathrm{PPh}_{3}\right)_{2}+\mathrm{P}(\mathrm{OMe})_{3}\right.$
$\longrightarrow f a c-\mathrm{Re}(\mathrm{NPh})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}(\mathrm{OMe})_{3}\right) \mathrm{Cl}_{3}, \mathrm{III}+\mathrm{PPh}_{3}$
In ${ }^{13} \mathrm{C}$ NMR spectra, both II and III show a doublet for PMe_{3} ($\delta 12.96, \mathrm{~d}, \mathrm{JPC}_{\mathrm{C}}=138 \mathrm{~Hz}$) and $\mathrm{P}(\mathrm{OMe})_{3}$ ($\delta 55.67$, d , ${ }^{2} J_{\text {PC }}=34 \mathrm{~Hz}$), due to carbon-phosphorus couplings. In ${ }^{1} \mathrm{H}$ NMR spectra, methyl protons of PMe_{3} in Il give rise to a sharp doublet of doublets at $\delta 1.65$, indicating that, first, the protons of PMe_{3} are strongly coupled to the phosphorus of $\mathrm{PMe}_{3}\left({ }^{(} J_{P \cdot \mathrm{H}}=10.87 \mathrm{~Hz}\right.$), and second, weakly coupled to the phosphorus of PPh_{3} trans to $\mathrm{PMe}_{3}\left({ }^{(} \mathrm{I}_{\mathrm{P} \cdot \mathrm{H}}=1.22 \mathrm{~Hz}\right)$. In ${ }^{1} H$ NMR spectra, the splitting patterns of phosphine protons of metal bisphosphine complexes in which phosphines are particularly identical alkyl phosphines, are known to be sensitive to the relative orientations of the two phosphines. ${ }^{11}$ For example, if two phosphine ligands are cis, a doublet for the alkyl protons is observed. On the other hand, if they are trans, a distorted triplet with a broad central peak is observed, due to the virtual coupling by which alkyl protons appear to be coupled both to its own and to the trans-phosphorus nucleus about equally. Although the two phosphines in II are trans, ${ }^{1} \mathrm{H}$ NMR spectra of II exhibits a doublet of doublets for methyl protons instead of a triplet, probably because of the inequivalent phosphines. ${ }^{1} \mathrm{H}$ NMR spectra $11 I$ show a sharp doublet at $\delta 3.69$, which indicates a cis-orientation of PPh_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$ ligands. The relative orientations of two phosphines in II and III were concretely confirmed by X-ray diffraction studies, as described later.

The relative orientations of the phosphine ligands in II and III invoke a fundamental question as to how they were formed. Since the starting material I is an 18 -electron saturated complex, complex II and III might be produced from the same 5 -coordinate intermediate, which was formed by dissociation of PPh_{3} (Scheme 1). In addition, the intermediate appeared to be fluxional, considering the relative orientations of two phosphine ligands in II and III. In other words, II was formed by addition of PMe_{3} before the intermediate rearranged and III was formed after the intermediate rearranged. These results might be explained in terms of the differences in coordinating abilities between PMe_{3} and P (OMe) ${ }_{3}$. Trialkylphosphines are known to have more powerful coordinating ability than the corresponding triatkylphosphites. ${ }^{12} \mathrm{PMe}_{3}$, with the better coordinating ability, appeared to bind to the intermediate to give II before the ligand rearrangement, with the retention of configuration around the rhenium metal. On the other hand, $\mathrm{P}(\mathrm{OMe})_{3}$, with the less coordinating ability compared to PMe_{3}, seemed to react somewhat slowly with the fluxional intermediate which has enough time to rearrange. This type of rearrangement of the intermediate A (Scheme 1) was also observed in the preparation of fac- $\mathrm{Re}(\mathrm{NPh})\left(\mathrm{PPh}_{3}\right)(\mathrm{CO}) \mathrm{Cl}_{3}$ from the reaction of I with CO^{6} At this point we cannot' clearly explain how

I

III

Scheme 1.

Figure 1. ORTEP drawing of II showing the atom-labeling scheme and $\mathbf{5 0 \%}$ probability thermal ellipsoids.
the fac-orientation of the three Cl ligands in III was preferentially formed. However, since the other three ligands in III, $\mathrm{P}(\mathrm{OMe})_{3}, \mathrm{PPh}_{3}$, and NPh , are relatively strong trans-influence ligands, they are expected to prefer cis-orientations to each other. These cis-orientations maybe play an important role in determining the direction of the ligand rearrangement of the intermediate to produce the fac-orientation of the three Cl ligands.
Structure of II and III. As shown in Figure 1, 2, compound II has a NPh group, three mer-Cl atoms and transphosphine ligands, and compound III has a NPh group, three facial- Cl atoms, and cis-phosphine ligands. II shows a more distorted octahedral geomertry than the starting material \mathbf{I}^{13} (Table 3). For example, five atoms ($\mathrm{Re}, \mathrm{N}, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13$) on the basal plane in I and II are coplanar within ± 0.01 $\AA, \pm 0.05 \AA$, respectively, and the bond angles of P-Re-P are 174.1(1) ${ }^{\circ}$ in I and 172.5(1) ${ }^{\circ}$ in II. The distortion may result from replacing one PPh_{3} in I by a smaller PMe_{3} group. ${ }^{12}$ The fact that the dihedral angles between the basal plane ($\mathrm{Re}, \mathrm{N}, \mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 13$) and a phenyl ring of phenylimido are $5.2(3)^{\circ}$ in compound I and $12.5(5)^{\circ}$ in compound II also supports the sterical repulsion among the phenylimido phenyl ring and two phosphine ligands. In comparison to the

Figure 2. ORTEP drawing of Ill showing the atom-labeling scheme and 50% probability thermal ellipsoids.
starting material I, the bond distance of Re-N became shorter from $1.726(6) \AA$ to $1.711(6) \AA$ and the bond angle of Re-N$\mathrm{C}(\mathrm{Ph})$ became essentially linear from $172.6(6)^{\circ}$ to $176.0(6)^{\circ}$, indicating that the Re-N bond in II is strengthened and has a more triple bond character, and therefore the nitrogen atom has more s-character. ${ }^{\text {la }}$.
On the other hand, five atoms ($\mathrm{Re}, \mathrm{N}, \mathrm{C} 11, \mathrm{C} 12, \mathrm{P} 2$) on the basal plane in III are coplanar within $\pm 0.02 \AA$, and the dihedral angle between the basal plane and the phenylimido phenyl ring is $44.8(4)^{\circ}$, which suggests that the steric repulsion among the phenylimido phenyl ring. PPh_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$ is very high. The bond distance ($1.710(8) \AA$) of Re-N in III is similar to that $(1.711(6) \AA)$ in II, but the bond angle of $\mathrm{Re}-\mathrm{N}-\mathrm{C}(\mathrm{Ph})\left(167.9(7)^{\circ}\right)$ in III is more distorted from linearity than that (176.0(6) ${ }^{\circ}$) in II. Structural studies of both II and III show that the nitrogen atom in both complexes has more s-character than that in I, and that the cis-configuration of PPh_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$ in III results in the high steric congestion around the central metal to break more severely the coplanarity between the basal plane and NPh.
The bond distances of $\mathrm{Re}-\mathrm{Cl}$ (2.419(2) \AA in II, 2.419(3) \AA in III), trans to N, are longer than that in I (2.402(2) \AA), suggesting that the imido group has an enhanced transinfluence effect in II and III. The average bond distance of $\mathrm{Re}-\mathrm{Cl}(2.421(6) \AA$ for II, $2.423(3) \AA$ for III), trans to phosphine, in II and III became longer than that in I (2.409(4) \AA), in spite of substitution of a smaller PMe_{3} (cone angle, $\left.\theta=118^{\circ}\right), \mathrm{P}(\mathrm{OMe})_{3}\left(\theta=107^{\circ}\right)$ for a larger $\mathrm{PPh}_{3}\left(\theta=145^{\circ}\right)^{12}$ These results suggest that an electronic effect of PMe_{3} and $\mathrm{P}(\mathrm{OMe})_{3}$, in addition to their sterric effect, on the geometry of II and III may also be important. The metal-halide bond in a high-valent metal complex frequently has a multiple bond character due to π-bonding from a lone pair of electrons to a vacant d-orbital of the metal in the high oxidation state. ${ }^{14}$ The elongated bond distances of $\mathrm{Re-Cl}$ in II and III might be explaned by the presence of both $\mathrm{PR}_{3}(\mathrm{R}=\mathrm{Me}$ in II, OMe in III) and a more $s p$-hybridized imido group, which
can donate the electron density to the eletron-deficient Re metal in the high oxidation state of +5 . The Re-P bond distances (2.421(2) \AA for Re-PMe 3 , 2.465(3)-2.503(2) \AA for RePPh_{3}) agree with known values (2.324-2.470 $\AA, 2.472-2.505$ \AA, respectively). ${ }^{15}$ The Re- $\mathrm{P}\left(\mathrm{PPh}_{3}\right)$ bond distance of $2.503(2)$ \AA in II, trans to PMe_{3}, is longer than that (2.465(3) \AA) in III, trans to Cl , which can be explained on the basis of the known fact that PMe_{3} is a stronger trans-influence ligand than Cl^{16}

In summary, we prepared $\operatorname{Re}(\mathrm{NPh})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PR}_{3}\right) \mathrm{Cl}_{3}\left(\mathrm{PR}_{3}=\right.$ PMe_{3} for II, $\mathrm{P}(\mathrm{OMe})_{3}$ for III) from $\mathrm{Re}\left(\mathrm{NPh}^{2}\right)\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}$ by replacing one PPh_{3} with the corresponding ligands. Structures of these mixed-phosphine complexes have been determined through X-ray diffraction. Structural studies showed that the relative orientations of the two phosphines in both complexes are different, probably due to the differences in the coordinating abilities between PM_{3} and $\mathbf{P}(\mathrm{OMe})_{3}$ to the 5 -coordinate fluxional intermediate.

Acknowledgment. This work is based on research sponsored by the Ministry of Education under grant BSRI-94-3420.

Supplementary Material Available. Tables of bond distances and bond angles, anisotropic thermal parameters, positional parameters for hydrogen atom (8 pages); listings of observed and calculated structure factors (14 pages). Supplementary materials are available from one of the authors (S. W. Lee) upon request.

References

1. (a) Nugent, W. A.; Mayer, J. M. Metal-Ligand Multiple Bonds; John Wiley and Sons: New York, U. S. A. 1988. (b) Chisholm, M. H.; Rothwell, I. P. In Comprehensive Coordination Chemistry; Wilkinson, G.; Gillard, R. D.; J. A. McCleverty, Ed.; Pergram Press: Oxford, England, 1987; Vol. 2, pp 161-188. (c) Nugent, W. A; Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123 (d) Cenini, S.; La Monica, G. Inorg. Chim. Acta 1976, 18, 279.
2. Maata, E. A.; Du, Y.; Rheingold, A. L. J. Chem. Soc. Commun. 1990, 756 and references therein.
3. Bakir, M.; Fanwick, P. E.; Walton, R. A. Inorg. Chem. 1988, 26, 2692 and references therein.
4. (a) Gray, S. D.; Smith, D. P.; Bruck, M. A.; Wigley, D. E. J. Am. Chem. Soc. 1992, 114, 5462. (b) Perot, G. Catal. Today 1991, 10, 447.
5. Glueck, D. S.; Wu, J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 2041.
6. Kim, Y-W.; Jung, J-H.; Lee, S. W. Bull. Korean Chem. Soc. 1994, 15, 150.
7. (a) Chatt, J.; Diworth, J. R. J. Chem. Soc. Chem. Commun. 1972, 549. (b) Chatt, J.; Garforth, J. D.; Johnson, N. P.; Rowe, G. A. J. Chem. Soc. 1964, 1012.
8. Sheldrick, G. M. Acta Cryst. 1990, A46, 467.
9. Sheldrick, G. M. SHEIXL-93, University of Gottingen, 1993.
10. Johnson, N. R.; Pickfold, Martin, E. L. J. Chem. Soc., Dalton Trans. 1976, 950.
11. Crabtree, R H. The Onganometallic Chemistry of the Transition Metals; John Wiley and Sons: 2nd ed.; New York, U. S. A. 1994; p 237.
12. Tolman, C. A. Chem. Rev. 1977, 77, 313.
13. Forellini, E.; Casellato, U. Acta Cryst. 1984, C40, 1795.
14. Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry; Harper Collins: 4th ed.; New York, 1993; p 420.
15. Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc. Dalton Trans.

1989, S1-S83.
16. Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Book, Mill Valley, 1987; p 67 .

pH-Dependent Electrochemical Behavior of N-Monosubstituted-4,4'-Bipyridinium Ions

Joon Woo Park*, Yuna Kim, and Chongmok Lee
Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea
Received July 19, 1994

Abstract

The pH -dependent reduction behavior of N -monosubstituted-4,4'-bipyridinium ions ($\mathrm{RBPY}^{+}: \mathrm{R}=$ methyl $\left(\mathrm{C}_{\mathrm{L}}\right)$; benzyl; n-octyl; n-dodecyl) has been investigated by electrochemical and spectroelectrochemical techniques. At acidic condition, RBPY^{+}is protonated and the protonated species are reduced by two consecutive one-electron processes. The $2 e^{-}$ reduced species undergoes a chemical reaction with H^{+}. The second-order rate constant $\left(k_{\mathrm{H}}\right)$ of the homogeneous chemical process is $(3.7 \pm 0.3) \times 10^{3} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ for the two electron reduction product of $\mathrm{C}_{3} \mathrm{BPY}^{+}$. At high pH , the electrode reduction of RBPY^{+}is one-step $2 e^{-}$transfer process with concomitant addition of H^{+}, which is confirmed by cyclic voltammetric study using a microdisk electrode.

Introduction

N -monosubstituted-4, $4^{\boldsymbol{}}$-bipyridinium ions (RBPY^{+}) are closely related with $\mathrm{N}, \mathrm{N}^{\prime}$-disubstituted-4, 4^{4}-bipyridinium ions (viologens) via the following acid-base equilibrium.

The acidic form has structural similarity to viologens which are very attractive materials as electron-transfer reagent in chemical ${ }^{1}$ and photochemical ${ }^{2}$ reductions of substrates, solar energy conversion, ${ }^{3}$ and electrochromic display. ${ }^{4}$ The basic form is a substituted pyridinium and can be considered as a coenzyme NAD^{+}analogue. Because of these interesting characters, the pH -dependent electrochemical ${ }^{56}$ and spectroscopic ${ }^{7 s}$ behaviors of the RBPY ${ }^{+}$compounds as well as their ability as electron carriers ${ }^{9-11}$ in redox reactions have been investigated. Recently, Ishida et al. ${ }^{11}$ reported that the interaction between CO_{2} and electrochemically reduced species of N -propyl-4, 4^{\prime}-bipyridinium cation ($\mathrm{C}_{3} \mathrm{BPY}^{+}$) activates the electron transfer from the bipyridine ring to CO_{2}. They also claimed that $\mathrm{C}_{3} \mathrm{BPY}^{+}$is reduced by l^{-}process at -1.0 V (vs SCE) in acetonitrile media. We have been interested in electrochemical behavior of viologens ${ }^{12,13}$ and the reactions of the reduced $\mathrm{NAD}^{+}, \mathrm{NADH}$, and their analogues. ${ }^{14,15}$ In this paper, we present the pH -dependent reduction behavior of RBPY utilizing electrochemical and spectroelectrochemical techniques. Cyclic voltammetry (CV) with a microdisk electrode is used to determine the number of elec-
trons transferred in the reduction reactions. Also, the reaction rate of the electrogenerated $2 e^{-}$reduction product of $\mathrm{C}_{1} \mathrm{BPY}^{+}$in acidic medium is determined.

Experimental

Materials. N -monosubstituted-4,4'-bipyridinium (RBPY ${ }^{+}$; $\mathrm{R}=$ methyl (C_{1}); benzyl (B); n-octyl (C_{8}; n-dodecyl (C_{12}) salts were prepared by reacting $4,4^{4}$-bipyridine with corresponding alkyl or benzyl halides according to known procedure. ${ }^{9}$ Solutions of desired pH were prepared by appropriate mixing of $0.10 \mathrm{M} \mathrm{HCl}, 0.01 \mathrm{M} \mathrm{NaOH}+0.09 \mathrm{M} \mathrm{NaCl}$, or 0.01 M $\mathrm{Na}_{2} \mathrm{HPO}_{4}+0.07 \mathrm{M} \mathrm{NaCl}$ solutions. Reverse osmosed water which was further purified by passage through a purification train (Millipore Corp) was used.

Apparatus and procedures. Cyclic voltammetry (CV) was carried out with a BAS 100 B electrochemical analyzer or a Tacussel PRG 5 potentiostat coupled with a GSTP3 function generator. Glassy carbon electrodes (Metrohm and BAS, area of $0.06-0.07 \mathrm{~cm}^{2}$) were polished using $0.1 \mu \mathrm{~m}$ alumina followed by sonication in pure water. A carbon microdisk electrode having a nominal diameter of $11 \mu \mathrm{~m}$ was prepared ${ }^{16}$ and used. All potentials are reported against a saturated calomel electrode (SCE) unless otherwise specified. Solutions were purged with nitrogen to remove oxygen. Current was calculated by substracting the background CV data taken without RBPY ${ }^{+}$from CV data recorded with RBPY ${ }^{+}$. A Hewlett-Packard 8452A diode array spectrophotometer was used to obtain absorption spectra where the potential of the working electrode (ITO coated glass, Delta Technologies) was controlled potentiostatically.

