HBlE FH15 Multimedia Document Databases 31

Invited Paper

Multimedia Document Databases:
Representation, Query Processing and Navigation

Ravi S. Kalakota* and Andrew B. Whinston*

Abstract

Information systems for application areas like office automation, customer service or comput-
er aided manufacturing are usually highly interactive and deal with complex document struc-
tures composed of multiple media formats. For the realization of these systems, nonstandard da-
tabase systems, which we call document databases, need to handle different types of coarse-
and fine-grained document objects(like full-text documents, graphics and images), hierarchical
and non-hierarchical relationships between objects(like composition-links and cross—-references
using hypertext structures) and document attributes of different types such as formatting/pre-
sentation information and access control. In this paper, we present the underlying data model
for document databases based on descriptive markup languages that provide mechanisms for
specifying the logical structure(or schema) of individual documents stored in the database. We
then describe extensions to the data model for supporting notion of composite structures(“join”
operators for documents) —~composition and hyperlinking mechanisms for representing com-
pound documents and inter-linked documents as unique entites separate from their com-
ponents. Furthermore, due to the interactive nature of the application domains, the database
system in conjunction with clients(or browsers) has to support visual navigation and graphical
query mechanisms. We describe the functionality of a new user interface paradigm called
HyBrow for meeting the above mentioned requirements. The underlying implementation strate-

gy is also discussed.

* Department of Management Science and Information Systems, University of Texas at Austin, Austin, Texas
78712

32 Ravi S. Kalakota and Andrew B. Whinston

dioleleolx A

1. Introduction

The importance of data as a valuable and
persistent information asset of
organizational knowledge and functioning is
widely accepted as the basic axiom when de-
signing information systems. Databases
have been developed to store, manage, and
allow access to essential data for business
processes. Modern DBMSs are being used to
manage a wider variety of data types and to
provide integrated support for various busi-
ness processes and functions [Stonebraker
& Kemnitz 1991). However, standard
RDBMS technology does not adequately
meet the needs of certain non-traditional ap-
plication areas like electronic publishing, of-
fice automation, customer service or comput-
er aided manufacturing. These application
areas typically use documents as the basic
data type for organizational work related
activities. For instance, valuable informa-
tion, often relevant to organizational prob-
lem-solving and decision-making, is not
stored in corporate databases, but instead
contained in on-line documents such as
memos, electronic mail, manuals for stan-
dard operating procedures, technical manu-
als, regulatory and legal documents. To ob-
tain maximum benefit from the voluminous
amounts of on-line documents, data man-
agement techniques need to be adopted that

promote coherent document structuring, dis-

tribution and manipulation.

In many organizations, large amounts of
on-line documents cannot be easily accessed
or manipulated by end-users because they
are stored on different hardware platforms
under diverse operating systems, application
software or use format specifications that
are not interchangealbe or interoperable.
The document interoperability problem is com-
pounded further by the fact that document
content is not simple text but may contain a
multitude of data types ranging from for-
matted text(e.g. Postscript, PDF), graphics
(e.g. CGM, GKS), images(e.g. bitmap, GIF
or JPEG), video(e.g. QuickTime, MPEG)
and audio(e.g. MIDI(hi-fi stereo), WAV)
segments. In addition to document
interoperability, organizations planning on
using on-line documents are faced with two
problems : the need to reformat documents
for different media—--print, display, etc., and
perhaps even more important, the need to
access and retrieve information “trapped” in
an ever—-growing repository of electronic
documents. To solve these problems, what is
required is a way to create a schema struc-
ture for documents that provides a means
for identifying or “tagging” the information
elements of documents with great flexibility
so that the structure of the information in
the document and the relationships of its
parts- may be described with the clarity re-
quired to allow automated assembly, disas-

sembly, modification and reassembly of the

H1%E BN

Multimedia Document Databases 33

information elements.

Many computer users engage in the cre-
ation of what can be called compound docu-
ments—documents with parts containing var-
ious medié, such as text, tables, movies,
sound and graphics in a variety of file for-
mats[OpenDoc 1993). Every part contains
data—for example, text parts contain char-
acters, graphics parts contain lines and
shapes, spreadsheet parts contain
spreadsheet cells with formulas, and video
parts contain digitized video. The particular
type of data that each part contains is
known as the part’s intrinsic content. In
addition to 1iis intrinsic content, a part may
contain other parts. Currently each medium
requires users to work in different ways,
and often in separate applications or editors,
demanding a labor-intensive series of
actions to view and manipu.]ate the informa-
tion in the document part. This lengthy and
cumbersome process tends to be error-prone
and frustrating as there are no formal rules
for aggregating different document parts to
create consistent structures. For example,
every document has a single part at its top
level, the root part, into which all other
parts are embedded in a hierarchical struc-
ture. Clearly, we need techniques for specify-
ing the intrinsic content of document parts
and the logical structure of document with
respect to the various parts.

In section 3, we deal with the task of spec-

ifying a document schema structure for

specifying the intrinsic content(data model)
of any document. We use Standard Genera-
lized Markup Language (SGML)[Bryan
1988, Goldfarb 1990, ISO-8879 1986] for
specifying the within document structure.
SGML comprises a single set or rules(called
descriptive markup or tags) that specifies
the structure of a document, independent of
its format. Each class of SGML documents
has an associated Document Type Definition
(DTD) file that contains lists of allowed
tagged elements and their hierarchical rela-
tionships. The DTD file explains the SGML
tagging structure and can be used by a pars-
er to check and flag any noncompliant tags.
This programming-like aspect of SGML
gives it the potential to operate on a more
profound level than any other document
standard developed for document content
specification.

Document interoperability is further made
difficult by the fact that the notion of a doc-
ument as an entity with clear boundaries is
fast becoming antiquated. With embedded
hypertext links, a dbcument can no longer
be considered an isolated entity but a net-
work of interlinked textual and multimedia
information[Halasz & Schwartz 1994]. The
ability to browse around a network by fol-
lowing the links from node to node is a de-
fining feature of hypermedia document
[Conklin 1987]. Hypertext is important as
the page metaphor which is the basis for
thinking about traditional documents(e.g.,

34 Ravi S. Kalakota and Andrew B. Whinston

gioletsoj& g

publishing or word processing) could prove
to be a hindrance in working with electronic
documents. Scrolling up and down pages is
certainly out of the question for users who
plan to spend lots of time referencing very
long documents. The page metaphor is not
through

hypertext document structures, where the

appropriate for navigating
user traverses links between document ele-
ments which could be as fine grained as
words or paragraphs or coarse grained as
document parts mentioned earlier.

The basic hypermedia document network
has only two primitive constructs : docu-
ment nodes and links. Although this model
has been widely adopted for building simple
- hypermedia structures[Goodman 19861 and
more recently distributed hypermedia
[Berners—Lee et al. 19927, it is insufficient
for building complex information systems ca-
pable of serving the organizational needs. In
particular, the model lacks a composition
mechanism for building composite struc-
tures, i.e., a way of representing and dealing
with group or collections of document nodes
and links as unique entities separate from
their components[Halasz 1988]. The goal of
composite structures is to reduce large docu-
ment spaces Into more manageable sets
using abstraction mechanisms such as aggre-
gation, association or classification hierar-
chies. Also, navigation through a large docu-
ment network can be made simpler with the

notion of composite structures. For instance,

KMS[Akscyn et al. 1989] uses a top—down,
stagewise refinement approach to organizing
material in the hypertext database called
“hierarchical skeleton”. The resulting hierar-
chical “skeleton” in the database helps users
build a coherent mental model of the data-
base. They can remain oriented when navi-
gating because they can always see whether
they are selecting a hierarchical link or a
cross-reference.

In section 4, we deal with hypermedia ex-
tensions of the data model specified in sec-
tion 3. Our emphasis is on specifying com-
posite structures that permit abstract(or
higher level) view of the document space
than the traditional node-link model of
hypertext. We investigate the notion of a
document classification hierarchy(by hierar-
chy, we mean a partial order) that describes
collections of documents and the contain-
ment relationship among these collections. In
barticular, we examine how the operations
of aggregation and association can be used
to organize and structure the multimedia
document space. Aggregation[Botafogo &
Shneiderman 19917 is a way of grouping re-
lated documents or document parts that
may be interlinked. Aggregation implies a
much looser relationship than a type(part/
whole) hierarchy. It implies an organization
structure in which the participating entities
allude to each other but remain essentially
independent. Association deals with creating

names which are persistent. For example,

1% I

Multimedia Document Databases 35

documents which are distributed around the
organization but related to a customer must
all be collected under one association called
“CUSTOMER”. Our goal is to develop an un-
derétanding of the operators needed for
building composite structures that reduce
the complexity of document space and en-
able more effective user interfaces for query-
ing and browsing of unfamiliar collection of
documents.

Often users can describe exactly what in-
formation they are looking for, but simply
cannot find it in the network. Excessive reli-
ance on navigation for document access can
be time consuming and problematic in large,
unfamiliar networks. Navigational access
using node-to-node links is probelmatic be-
cause users tend to get lost while wandering
around in the network looking for some tar-
get information. To complement navigation,
effective access to information stored in a
hypermedia document network requires
guery-based access. Two types of query
mechanisms are possible in document net-
works ! content-based and structure-based
queries[Halasz 1988]. In content—based
query, all document nodes and links in the
network are considered as independent enti-
ties and are examined individually using reg-
ular expression or string matching functions
for a match to the given query[Salton
1991]. Structure-based query examines the
individual document structure or network

structure for sub-networks that match a

given pattern[Arnon 1992]. An incremental
solution to the navigational problems would
be to improve and augment the existing nav-
igation tools by interleaving browsing and
querying. In other words, a more fundamen-
tal solution is to augment navigation by a
query-based access mechanism. With such a
mechanism, the user could formulate a
query encapsulating a description in the net-
work. The structure that is returned 1s then
browsed by the user to further narrow the
possibilities.

In section 5, we present content and struc-
ture based queries on composite structures
and within document content. As pointed
out earlier, query facilities which combine
aspects of both content search and structure
search will be needed for browsing through
document networks. For these reasons, we
have taken a much more general approach
to repository access, called Query by Brows-
ing, which we describe in section 5. In Fig-
ure 1, we show how the three various issues
in document database management that we
have presented fit together.

The rest of the paper is organized as fol-
lows. We present relevant background work
and related research in Sesction 2. The data
model for supporting the complex applica-
tion requirements is presented in Section 3.
In Section 4, the hypertext extensions to this
model are discussed. We then present the
new user interface paradigm called HyBrow

where browsing and querying are inter -

dlojetylo]& g

36 Ravi S. Kalakota and Andrew B. Whinston

Document/User Interface
Visualization, Query and Navigation Interface

Hypermedia Network Layei'
Network of Inter-Linked Nodes/Documents

Within-Document Component Layer
The Content/Structure inside a Document Component

| Physical Storage SubSystem(DATABASE) |

Figure 1 : Structure of Document Management System

leaved to create an effect known as the
Query by Browsing model. In this section,
we describe the mechanisms by which query
parsing (initial preprocessing), query optimi-
zation and query executlon are handled to
accomplish the HyBrow paradigm. Finally,
in the conclusion, we briefly describe
research extensions and implementation

challenges.

2. BACKGROUND

2.1 Descriptive” Markup

Conventional documents are often struc-

tured and stored in such a way that docu-

ment content is hard to access and manipu-
late. One method for solving this problem is
to separate the logical structure of the docu-
ment from the physical document structure
(or formatting) (see Figure 2). The class of
documents where this separation takes place
is known as siructured documents. Struc-
tured documents differ from traditional doc-
uments(e.g. word processing files or docu-
ment imaging) as they contain descriptive
markup that describes the logical structure
of the document. This logical structure can
be effectively utilized for describing the to-
pology of multimedia documents containing
several components—formatted text(e.g.

Postscript), images(e.g. JPEG), video(eg.
MPEG) and audio segments.

1) Descriptive markup is also known as Generalized markup. Markup is so named because of its resemblance
to the markings that copy editors make on drafts of paper documents.

1 HIN

Multimedia Document Databases 37

Traditionally, the area in which structured
documents have had the most relevance has
been in the formatting, display and publish-
ing of electronic documents. Three impor-
tant -development here are the Open Docu-
ment Architecture(ODA)[ISO-8893 19861,
Digital Equipment Corporation’s Compound
Document Architecture(CDA) and Stan-
dard Generalized Markup Language
(SGML) standards. ODA and CDA are
largely concerned with the interchange of of-
fice documents across different platforms,
whereas SGML provides a framework for
deyeloping document data models. Both
ODA and CDA provide a set of standards
for the interchange of complex documents
made up of text, images, and graphics
among computer platforms and applications.
Compound document architectures encode
documents using in—-memory arrays called
aggregates. Aggregates can be used to rep-
resent audio, graphics, text, and video, as
well as a document’s physical formatting,
logical organization, and text siyling. Aggre-
gates can be processed as a document or as
an information database, such as a parts
list, an index, a glossary, or a multi-media
document. SGML accomplishes document en-
coding using a different techinque than CDA
or ODA. Rather than dynamically creating
new and different data types, as do CDA
and ODA, SGML uses special character se-
quences known as markup tags to embed

control information within the text stream.

Markup tags can separate a document’s logi-
cal elements or specify processing functions
to be performed on them. In essence, these
standards, particularly SGML, enable us to
specify the logical structure of documents
(specified using descriptive markup), sepa-
rately from the formatting information (spec-
ified using procedural markup). Procedural
languages(e.,g. TeX, LaTeX,
TROFF, SCRIBE) provide a set of methods

1o express how a document should be pro-

markup

cessed by the printers or the document pro-
cessing systems. For instance, in TeX
[Knuth 1989] backslash means that subse-
quent input is TeX instructions. These mark-
up languages offer additional constructs for
building more abstract macros. For instance,
LaTeX[Lamport 1986] through macros
allows itemized lists, instead of indents, item
numbering, among other things.

Structure or descriptive markup is based
ori two postulates . (1) it - should describe
document structure and other attributes
rather than specify processing to be per-
formed on it as structure markup need only
be done once for every document and will
suffice for all future processing[Goldfarb
1990]; (ii) Markup should be rigorous so
that techniques used for processing soft-
ware, e.g. parsing and database ihtegrity
validation can be used for processing docu-
ments as well[Goldfarb 1990]. Markup is
entered by users in terms of codes or other

instructions via electronic typesetting pro-

38

Ravi S. Kalakota and Andrew B. Whinston

golehujola =y

grams, which in simple cases is the editor.
An example of markup code is TROFF’s® or
WordStar’s “.ce” for “center the following
line”. WYSIWYG® editors hide markup
codes from us by showing text as it appears
on output. Four types of markup are . punc-
tuation(spaces, punctuation), presentational
(layout, font choice), procedural(formatting

‘commands), and descriptive(mnemonic la-

bels for document elements)[Coombs 1987].
Markup is done using markup languages
and markup-aware text editiors. Unlike
artificial languages, markup languages have
to deal with embedded data, and contain
rules for what is markup and what is con-
tent. Figure 2 illustrates differences between
document structure and markup that repre-

sents formatting information.

Document n
Structure/Content ' Stalgzze(:;-{:)ﬁl:?iz?: Type Document :
— ——w | __Style/Rendering
Title 0 Encoding and Structuring Digital Font: Times
Paper] Documents Size: 24pt.
| Table of Contents Style: Bold, Centered|
Table of Y. Introduction . L Right Margin
Contents | 1.2 Benefits of Encoding Documents 3 1 Inch
1.3 Document Encoding vs, Relational Databases 6
| 2 visonof o Encoding in Busi 7 onL. imes
3. Standard Generakized Markup Langyage (SGML) 8 Size: 12pt.
| 3.1 What is SGM. and Who is it for? 8 Style: TOC
ST 3.2 A Simple Example ‘ -
Headin h. wtroduction ront: Times
§ " - ize: 14pt.
anaging documents and the information they contain is one of the t .
important information management chalenges facing lsl organizalion:?:day. Slyle. Bold+ IZP!
[Fhe profiteration of desktop computers and information they generate and ¢ {space above
Paragmph | ONtain in the form of ek NG O - text, images, audio and video
X ﬁ‘ee ‘l’able~ 1) has resulted in many IS managers scrambfing to get a handte
2 growing volume of information. Also, with the spread of computer usage ont: Times
t!hrouqhout the organizational hierarchy, much of corporate knowledge/ . 121
nformation is in the form of on-line documen e 12pt.
= | Style: Paragraph_Style
| igure !
=
= v
= Figure 1 Colaborative Activitie ont: Times 9pt
Table 1: List of Inf Types Columns:4
1 ColSep: .11 Inch

Figure 2 : Separating Document Structure from Content and formatting

2) Trogg is a Unix based text formatter program [Kerningham 1974] which has widely been used in the Unix
community, especially before graphical user interfaces when editing was first done with tools such as vi, and
the formatting for printout had to be done as a separate process(batch). Nroff is also a venerable text-pro-

cessing program, usualy supplied with Unix~based computer systems.
3) What You See Is What You Get.

H1% BN

Multimedia Document Databases 39

Descriptive markup is not tied to
formatting or printing capabilities. It focuses
on describing underlying structure of docu-
ments and says nothing about formatting.
With generalized markup, users teli the
system what the document has, rather than
how it should look, and this is often done by
putting a label(i.e. tag) around the text.
There is a clear correlation between tags
and what things look like. However, the tags
do not determine how the actual output will
look—whether the “Heading” is to be printed
or displayed as 14-point or 18—point. This is
a matter of style, and style is the job of the
output specification a separate file that can
be attached to the document. This “freeing
content from formatting information” makes
it possible to use the same document for dif-
ferent delivery media : document instances
can be processed for Braille delivery, on—
line screen delivery, audio delivery, machine
—-to-machine delivery, paper delivery, or all
of these purposes.

Descriptive markup is being primarily
SGML[ISO-8893 1986;
Goldfarb 1990]. SGML is entirely descrip-

tive, leaving procedures and formatting to

done using

the devices that read and interpret the tag-
ging systems defined in a document-type
definition. Section 2 describes this in greater

detail.

2.2 Hypertext documents vs.
Conventional Documents

To understand why hypertext documents

are attracting attention, one must under-
stand how a hypertext “document” differs
from a conventional paper document. In
most conventional paper documents physical
structure and logical structure are closely
related. Physically, the document is a long
linear sequence of words that has been divid-
ed into lines and pages for convenience. Log-
ically, the document is also linear : words
are combined to form sentences, sentenées
to form paragraphs, paragraphs to form sec-
tions, ete. If the document has a hierarchical
logical structure, as do many expository doc-
uments such as books, that hierarchy is pre-
sented linearly : the abstract or overview
comes first, followed by the introduction, the
first chapter, the second chapter, etc., untill
the conclusion. This linearity is easy to see if
one imagines the hierarchical structure rep-
resented as an outline, with the sections of
the document appearing in the same order
as they normally do in the outline. Such doc-
uments strongly encourage readers to read
them linearly, from beginning to end
follwing the same sequence.

A few conventional paper documents—
encyclopedias, dictionaries, and other refer-
ence works-separate logical structure from
physical structure. Physically, these docu-
ments are linear sequence of independent
units, such as articles on specific topics or
entries for individual words. Logically, they
are more complex. The reader seldom reads

such documents from beginning to end, but

40 Ravi S. Kalakota and Andrew B. Whinston

dioleteiolx A

rather searches them to locate the article or
entry of interest(a form of random access),
and then reads that portion sequentially.
However, thé reader is likely to encounter
various cross reference to other entries
while reading as well as a list of “see also’s”
at the end of an article. To follow those
po_inters, the reader must locate the appro-
priate volume, find the appropriated entry,
and then the relevant portion.

The logical structure of reference and
other similar documents is, thus, more com-
plex. They have a sequential structure that
aids search, but the logical path of the read-
er is a network that can criss—cross the en-
tire document or set of documents, from one
item to another, to another, etc. Such docu-
ments are more flexible but they are also
cumbersome, particularly when they appear
in large, multi-volume formats.

Hypertext electronic documenis provide
most of the flexibility of referehce works as
well as add a number of new features. Earli-
er, we described a hypertext as a document
in which information is stored in nodes con-
nected by links. Each node can be thought of
as analogous to a short section of an ency-
clopedia article or perhaps a graphic image
with a caption. The links join these sections
io one another to form the article as a whole
and the articles to form the encyclopedia.

These links are usually shown for each node

as a “start” link pointing to the node just
read and a set of “end” links that indicate
the(usual) multiple node which one may se-
lect to read next. Many systems also include
pointers embedded in the text itself that link
a specific portion to some other node or por-
tion of text. Thus, one moves from node to
node by selecting the desired “to” link, an
embedded cross-reference link, or the
“from” link to return to the previous node.
For many documents, the “to” links can be
thought of as organizational. Collectively,
they frequently form a hierarchical structure
analogous to the hierarchical logical struc-
ture links cross the main organizational
structure. While we can establish a rough
analogy between the two, hypertext docu-
ments are much more flexible than conven-
tional documents. for example, one can read
the hypertext article just as one reads the
conventional paper article by first reading
the overview node, then the first section
node(s), the second section, etc. However,
one can also read the sections in different
orders. Hypertext documents are also much
more convenient. To follow the cross-refer-
ences in a modern encyclopedia often means
moving among many volumes. Readers do
it, but it is a slow, frequently laborious, task.

While hypertext provides greater flexibili-
ty than conventional documents, its power

and appeal increase dramatically when it is

1B H1N

Multimedia Document Databases 41

implemented in computing environments
that include networked microcomputers and
workstations, high-resolution displays, and
large on-line storage. While hypertext
systems can deliver the next node in less
than a second and form a much larger body
of information that might take thousands of
volumes in print. While conventional publica-
tions are limited to text and graphics,
hypertext nodes offer sound, video sequenc-
es, animation, even computer programs that
begin running when the node in which they
are stored are selected. While the
organizational and cross-reference struc-
tures of conventional documents are fixed at
the time of printing, hypertext links and
nodes can be changed dynamiéa]ly. Informa-
tion in individual nodes can be updated, new
nodes can be linked into the overall
hypertext structures, and new links added to
show new relationships. In some systems,
users can add their own links to form new
organizational structures, creating new doc-

uments from old.

CONTENT

2.3 Document Search and
Query

The serarch and query process for docu-
ments can be. divided into two broad class-
es . content search and structure search
[Halasz 1989]. We can partition these two
classes to be more precise about the type of
document space being searchéd in, namely
with-in document (intra-document search)
or the network of documents(inter-docu-
ment search) (See-Figure 3). Content search
for inter—document links(i.e., all nodes and
links are treated independently and exam-
ined for a match to the given query) has
been addressed to a very limited extent
(mostly for single machine systems) by
hypertext research. Intra—document content
search has points in common with informa-
tion retrieval(IR) techniques that have been
developed over the last 30 years to access
bibliographic databases and electronic card’

catalogs for libraries.

STRUCTURE

Key Word Indexes
Vector Space
Probabilistic Models

INTRA-DOCUMENT

Descriptive Markup based
Tree Transformations

INTER-DOCUMENT | Pdexing Ageregate
document collections

Lattice- Based Associative
Structures

Figure 3 : Search and Query Space

42 Ravi S. Kalakota and Andrew B. Whinston

dlojeps]ol2 g

In traditional IR applications, each docu-
ment is indexed by an expert, who specifies
a set of index terms from a controlled vocab-
ulary(such as the Library of Congress Sub-
ject Headings or a thesaurus of index
terms) which describe the subject material
of the document. In on-line IR system these
manually assigned index terms are supple-
mented with keywords automatically ex-
tracted from the titles, abstracts, and(when
available) the full text of the document.
Commonly, the individual words of con-
trolled index terms(which may be descrip-
tive phrases or classification numbers) are
also treated as keywords. A user who wish-
es to find documents in a collection that
might be relevant to his interests, specifies

- his request by indicating a Boolean combina-
tion of search criteria on specific fields, e.
g..

Title Keyword=“Wall Street” and (sub-
ject="“derivatives” or subject=“broker-
age”)

System with this sort of Boolean Query
language include commercial bibliographic
search services, such as LEXIS/NEXIs and
DIALOG, and a majority of on-line library
catalogs. More advanced retrieval methods
have been developed that replace Boolean
logic with more sophistricated matching
techniqués. These techniques, such as the
vector space and probabilistic models of IR,
attempt to rank the documents in the data-

base in order of their similarity, or probabili-

ty of relevance, to a given natural language
quéry[Slaton 1991]. Systems using these
methods include 13R{Croft 1987] and
WAIS[Kahle 1991].

There are Three problems with applying the

traditional IR paradigm to documents :

1) Traditional IR depends on the exis-
tence of a human(or a program) to index
the document by specifying a collection of
keywords. These documents have traditional-
ly _been text and it is not clear how to speci-
fy such keywords about images, video or
mathematical documents(e.g., spreadsheets).
The problem of searching through
heterogeneous' “mixed”-different formats
and data types—document collections re-

mains a research challenge.

2) As stated earlier, not all document
objects will be text. Many other kindé of doc-
uments, such as compound documents, must
be stored and indexed. It is not clear how to
apply the traditional IR paradigm to a hier-
archical document structure where several
documents may be embedded in the root doc-
ument. For instanée, a business report may
consist of graphics, spreadsheet and text ob-
jects. These objects may be nested, ie., in

turn contain other objects. Structural navi-

“gation of compound documents has not been

addressed.

3) Traditional IR does not address the

1% I

Multimedia Document Databases 43

problem of hypertext retrieval, i.e., network
of interlinked documents. In hypertext, the
user can navigate over the information by
following the links(or cross reference) in the
document. This form of associative naviga-
tion is context. dependent and if not careful-
ly organized can produce complex, disorga-
nized tangles of haphazardly connected doc-
uments.

Structure search is useful when browsing
thorugh a document or navigating through
hypertext networks. However, there has
been relatively little work in the area of
structured document retrieval. Structure
queries allow the user to specify a preferred
region which is to be explored further. The
result of a structure query will yield a sub~
network (in the case of inter-document net-
works) or a sub-tree from the hierarchical
SGML document structure.. The MULTOS
project is based on ODA[ODA 8893 1986]
and as described in [Bertino-Lee et al.
1988] only provides rudimentary structure
based search. The OED project provides
more general retrieval capability than con-
ventional systems, but is restricted by the
database search command language “PAT”
used to express the queries[MacLeod 1991].
In this paper, we address the issue of naviga-
tion and query of document structure in sec-
tion 5. But, in order to do structure-based
search, we must first understand the docu-
ment data model that provides a logical

schema for documents.

3. DOCUMENT DATA MODEL

An important issue in designing document
management systems concerns the design of
a suitable data model for structured docu-
ments. The data model provides a formal
structure for the storage, retrieval and con-
struction(or restructuring) of documents.
To better understand document data models,
we need to differentiate between various
structures that constitute the data model.
The most common distinction is between in-
ternal representation{or syntax) structure
and the outward appearance or visual geom-
etry. Other researchers have characterized
this distinction as : abstract objects versus
concrete objects[Kimura 1984], document
model versus output model[Furuta 1987],
logical structure versus physical structure
[Peels 1981] and logical structure versus
visible appearance[Lamport 1987].

Structured document models can also be
described in terms of document schemas, in-
stances and layouts. These are related in the

following manner :
Document Instance =Schema+ Layout+Content

A schema describes the possible structure
and data values corresponding to a class of
documents. The patterns of structuring fol-
low the dictates of some domain(e.g., Fi-
nance, Accounting) to which the document

belongs. Two types of schema strcutures are

44 Ravi S. Kalakota and Andrew B. Whinston

dlojebu] o]~ g

used in describing a document . Abstract
Schema and Concrete Schema. The Abstract
Schema describes the logical structure of the
document. For example, an Abstract Sche-
ma for a text—book describes a logical struc-
ture of index, chapters, sections, references
and appendices. Chapters may be structured
as title, chaper-_introduction, chaper-body
and conclusions. Chapter-body is further
structured in sub-sections, headings, para-
graphs, graphics and so on. This is one
Abstract Schema for a book. There could
possibly be parallel Abstract Schemas for a
class of documents known as text—book. For
example, we can have an Abstract Schema
that defines text-book for the blind, text-
book for the K-12, text-book for colleges
and so on. The Abstract Schema does not
provide the details about the content struc-
ture. This is the task of the Concrete Sche-
ma that defines phrase structures and well-
formed sentences for that particular task do-
main. The Concrete Schema also defines the
character set(e.g., ASCII, ISO 10646 eic.),
acceptable notations(e.g., Math, Image,
Video formats etc.) and syntax rules(e.g.,
Identifier names must be less than 12 char-
acters in length). For every logical siructure
defined by an Abstract Schema there could
be muliiple definitions of Concrete Schemas.

Each schema has one or more layout asso-

ciations. The outward appearance of the doc-

ument depends on the formatting instruc-
tions provided and the medium on which the
document is being rendered. A layout is a
mapping (one-to~-many) between the actual
content(document instance) and the output
device, such as printer, monitor, Braille or
audio for the visually impaired. Visual
formatting renders the document structure
on a two dimensional dispaly(paper or.moni- -
tor) using the specified formatting rulés.
The visual layout helps the reader recreate,
internalize and browse the underlying docu-
ment structure. The ability to selectively ac-
cess portions of the display, combined with
layout, enables multiple views. For example,
a reader can first skim a document to obtain
a high-level view and then read portions of
it in detail. We assume that for the purpose
of describing the layout mapping a full-
fledged formatting system[Adler 1994] is
available.

With new media types, layout is not
resiricted to visual formatting and may in-
clude audio formatting, which renders infor-
mation structure in a manner atiuned to an
auditory display. The influence of schemas
on layout processing for media such as video
and audio is a new area of research where
little has been done. The iraditional para-
digm in text-based documents is that the
reader is active, while the display is passive.

This active—passive role is reversed by the

F1E IR

Multimedia Document Databases 45

temporal nature of audio and video, that is,
mmformation flows actively past a passive lis-
tener or viewer who has little control, except
for actions such as STOP, PLAY, FAST
FORWARD or REWIND. This prohibits mul-
tiple views, that is, it is impossible to first
obtatin a high-level view and then “look” at
details of such documents. However, how
the layout mapping i1s to be specified for
video and audio is beyond the scope of this
paper and is described elsewhere[Raman
1994].

The formal model developed in this section
using SGML deals with documents as data
structures only ; that is, it describes docu-
ments in terms of schemas and instances.
As described earlier, it 1s worthwhile to note
that in SGML, the schema structure(provid-
ed by descriptive markup) is completely sep-
arated from the layout aspect{provided by
procedural markup). The SGML document
schema defines the logical structure and lan-
guage/context of the document. It presents
a collection of “grammar” rules for specify-
ing & set of valid document instances. The
syntactic definition for the SGML document
schema can be formally defined using an ex-

tended Backus-Naur Form (BNF) as :

{SGML-Document_Schema)
. : ={structure decl) | {process decl)

(structure decl)

: . =({abstract-structure decl) | {concrete.struc-
ture decl)
(process decl)
: I ={(interface decl) | (layout-process decl)
(interface decl)

: 1 = (view-process decl) | {query-process decl)

In this section, we will deal with (struc-
ture), namely the {abstract-structure) and
the (concrete_structure). In the latter sec-
tion, we will present how the (process decl)
are derived from the (structure decl). For
instance, the document schemas can be pro-
cessed for answering queries(query process-
ing) ;for effective visual presentation(layout
processing) ;or for extracting and customiz-
ing a specfic view of the document(view

processing).

3.1 Abstract Syntax

The abstract syntax, given as a set of pro-
duction rules, defines the decomposition of
the document into logical units or types. It is
the core of the grammar and neither the
concrete syntax nor the visual geometry can
be difined without reference to it. In this
paper, we present a model of abstract
syntax which is a variation of the operator-
phylum model as used in MENTOR[Donzeau
-Gouge 1984], GANDALF[Notkin 1985]
and the Synthesizer Generator[Reps &
Teitelbaum 1989]). The operator-phylum

model{ Donzeau-Gouge 19847 was invented

46 Ravi S. Kalakota and Andrew B. Whinston

tloj et o] 2 g

for use in structure-oriented editors. The
user of such system works only with the log-
ical structure and writes by progressively
expanding the parse tree all the way down
to the leaves. This careful demarcation of
abstract syntax and concrete syntax is not
found in BNF[Naur 1960] or phrase struc-
ture grammars[Chomsky 1956] and is use-
ful for developing higher level structures
that prove to be very handy for querying
and 'browsing.

In the operator-phylum model, operators
represent logical decomposition by listing a
sequence of phyla(borrowing the term from
abstract a.lgebra). Phyla define logical types
and are arranged in a hierarchy of subtypes
and supertypes. At the base of the hierarchy
are leaf phyla, such as INTEGER or
STRING. A phylum whose element subset is
empty is called a terminal phylum and one
whose set of subphyla is non-empty is called
a category. Although SGML has no sub-
types, some of the effect of having phyla
can be achieved by using groups in ELE-
MENT declarations, particularly if the group
is defined via a parametric ENTITY, which
gives it a label similar to a category. For ex-
ample, these declarations create the illusion

of supertype :

(1ENTITY % Link
“URL | URN | URC | Hytime-clink”)
{{ELEMENT MultiMediaObjectLink-
O((StratObject, %Link;, EndObject) &
LinkLabel)*

The first declaration implicitly defines a
logiral type called “Link” with subtypes of
the various hyperlink standards. The second
declaration uses this logical type by defining
a supertype called “MultiMediaObjectLink”
which utilizes the earlier type definition.
Now let us examine the abstract syntax
structure of an electronic catalog which is
being designed for use in 'elec'tro.nic com-
merce. The catalog structure is generic
enough to describe a wide range of com-
ponents, in this case a wide range of elec-
tronic components-resistors, capacitors,
transistors etc.—and devices, both mechani-
cal-fans, motors etc.—and electrical com-
ponents-power supply etc. In order to sim-
plify conceptual modeling, we can think of
information about each component as being
stored in one document. One can then de-
scribe the abstract syntax of this document
as a tree-structure with each node coﬁtain-
ing a hierarchy of structural types. For In-
stance, we can broadly distinguish several
nodes(or logical units) in the electronic
componont document depending on t'he infor-
mation being modeled : administrative, engi-
neering, manufacturing, technical support
and purchasing. Each logical unit, in turn,
hosts a hierarchy of sub-types that describe
the logical unit in increasing detail. See Fig-

ure 4.

w14 E1% Multimedia Document Databases 47
Component
Engineering Manufacturing Adminstrative Distribution Diagnostic

{Product-Data_Asset)
{Product-name)
{Product-number)

{Owner)

{Version-1ID)

(Version-date)
{Info_Source)

{Country-of -Origin)
{Security_Classification)
(Tariffs—and-Customs-Text)
{Product-_Description-text)
{Manufacturer-Name)
{Manufacturer.CAGE-Code)
{Product-Status)

{Replaces)

{Derived-Form})
{Replaced-by)

(Product-Information-Asset)
{Copyright-and-Trademarks)
(Terms-and-Conditions)
(Product-Support)
{Product-Data)
(Licensing/Access_Control)
(Document-Set_list)

{Safely_Regulations)
(Related_Specs-list)

Figure 4 . Logical Structure of a Component Document

The logical structure presented above can
be easily mapped on to SGML language
statements as 1illistrated by the segment

below :

{IENTITY % DocumentType “Electronic Catalog”)

(IENTITY % DocumentElement “Admin-Info,
(Engineering-Info & Manufacturing-Info & Diag-
nostic-Info & Distribution-Info?”)

(1ENTITY% Data-Assets “Ower-Id & Product-De-
scription & Manufacturer-Name”)

(JELEMENT % DocumentType; 00(%
DocumentElement ;)

{!ELEMENT Admin-Info -O(Product-Data-Asset &
Product-Information_Asset & Product-Safety-
Asset))

(IELEMENT Product-Data_Assht) -O(Product-
Name, Product-1d, (%Data_fssets;)
Product_Information-Asset ?& Product-Safety-
Asset)) :

In order to customize information to
address different business needs, for in-
stance, providing technical data to custom-
ers, usage in advertisements etc., we must
have an underlying repository of component
information encapsulated in documents. To
create these document instance, the phyla of
the absiract syntax must be transformed
into production rules with terminals or:

literals.

48 Ravi S. Kalakota and Andrew B. Whinston

diolgtuoj 2 g

3.2 Concrete Syntax

As pointed out earlier, the abstract struc-
ture describes the logical properites and the
concrete syntax provides implementation
specific properties. Concrete structure speci-
fications represent lower of the abstract
syntax tree ultimately terminating in phrase
structures. The concrete syntax defines the
interplay between the abstract syntax and
visual geometry. It provides the literals used
to construct the logical structure and indi-
cates the lexical ordering of the elements.
Here we present details of the abstract
structure presented earlier. It is important to
realize that for any abstract structure there
can be many corresponding concrete struc-
tures. Take for instance, Graphic Notations
and Math Notations. This abstract entity
and be implemented in a number of ways as

indicated below.

{1-Graphic. Notaiions defines the names of the graph-
ic notations supported.-)

(IENTITY % Graphic-Notations
“Image | Vector | GIF' | EPS | PICT | CGMChar |
CGMClLear | BMP | MET | TIFF | CDR”)

{1-Math.Notations defines the names of the math and
equation notations supported.-)

{(IENTITY % Math _ Notations
“TeXMath | eqn | ISONath | Mathematica”)

To understand the concrete syntax, exam-
ine the fragment of a concrete syntax perti-
nent to an electronic catalog. The phyla
“ProductData” is enhanced with a series of

production rules with literals.

(IELEMENT ProductData---(ProductNumber, (Own-
ers?
| Versions? | InformationSource?
| CustomsInformation? | ProductDescription?
| Manufacturelnfo? | ProductStatus?
| ProductSupport? | Releastinformation?
| Desc?)*))
{)ELEMENT ProductNumber-O(# PCDATA)*)
(1ELEMENT Owners-O(Enterprise | Person) +)
{!ELEMENT ProductSupport~O(SalesContact
| Marketing Contact] TechnicalContact)*)
{!ELEMENT (SalesContact | MarketingContact
| TechnicalContact) OO(Enterprise | Person) +)
{!ELEMENT EnterpriseName OO(# PCDATA)*)
{1ELEMENT Person-O(Name, Address?))
{!ELEMENT Name OO(NameBlock? | (Last, First?,
Middle?, JobTitle?, Desc?)))
(JELEMENT (Last | First | Middle | JobTitle | Desc)
OO(#PCDATA)*)

The literals in SGML range from #
PCDATA-parsed
CDATA-character data where nested

SGML markup is not permitted, to #
RCDATA-replaceable character data con-

character - data, #

taining text, character references that
resolve to character data. SGML provides
four techniques for minimizing the number
and length of document markup tags : tag
omission, tag shortening, tag grouping and
automatic tag recognition[Bryan 1988]. Of
these the most used is tag. omission. This is
indicated by the “O”. If the strat tag can be

@ »

omitted, a hyphen is placed in the first
character. The following symbols are used
extensively in the SGML grammar and an
explanation is provided so that the reader
can understand the usage. With this under-
standing the SGML fragment presented

above is fairly straightforward.

E1E HIR

Multimedia Document Databases 49

, — All must occur in the order shown
& - All may occur in any order
} - One and only one must occure

Connectors

? - Optional(0 or 1 time)

+ - Required and repeatalbe
(1 or more times)

* - Optional and repeatable
(0 or 1 times)

Occurence indicator

4. COMPOSITE STRUCTURES

In the previous section, we have outlined
the SGML-based data model for describing
the intrinsic document content(or within
document structure). Although the SGML
data model does capture the internal struc-
ture of documents, it still comes up short
when trying to represent relationships be-
tween documents and semantic
generalizations(such as classification, aggre-
gation or association) of document behavior.
In this section, we present an extension to
the data model for supporting more
shphisticated inter—-document relationships
using the notion of composite structures. A
composite structure uses the composition
mechanism to deal with a set of nodes or
links as a single object. The focus in this sec-
tion is on modeling composite structures
comprised of document nodes as seen by the
application and the user.

Inter-document relationships have

promarily been accomplished using the sim-
plé node-link model provided by hypertext.
Nodes are the basic information containers.
Links are used to connect two nodes which
have associated text or ancillary informa-
tion. Links, therefore, are the mode of navi-
gation in a hypertext network. Nodes in
hypertext can come in two varieties : typed
and untyped. An untyped node is a box for
information. It has no label or descriptor,
and therefore may contain anything. Exam-
ples of systems that have untyped nodes are
HyperCard and ToolBook. A typed node is
labeled, and the descriptor help users deter-
mine the nature of information contained in
the node. Types helps to classify nodes or de-
fine specialized operations. For example, a
node of type, “video” informs the viewer the
type of application required to play it. Exam-
ples of systems that have typed nodes are
World Wide Web[Berners Lee 1992] and
Notecards[Halasz 1989]. In the previous sec-
tion, we have shown how to extend the no-
tion of typed node with the SGML document
type definition(DTD). The SGML DTD ena-

50 Ravi S. Kalakota and Andrew B. Whinston

glol et o]~ Ag

bles us to create new document types, whose
instances can be linked together to form a
hypermedia network.

There are several problems with the sim-
ple node-link model. First, the user can use
the entire document node at only one level,
Despite the elaborate hierarchy provided by
the document structure, there is no way to
zoom in and out of the individual document
structure, examining its contents at differ-
ent levels of detail. This capability is com-
monly found in structured editors and out-
line processors, and is a critical component
in many authoring and information organi-
zation tasks. Another problem is the lack of
mechanisms for controlling the complexity
of hypertext structures. What may start out
as a well structured information system can
quickly become a tangled web of links and
cross—references. In fact, Halasz(1989) criti-
cized the “flatness” of structure of purely
physical link-based hypertext structures, ar-
guing that they lack a single node capturing
the overall “relationship” structure. In other
word, the basic node-link model lacks a
composition mechanism, i.e., a way of repre-
senting and dealing with groups of nodes
and links as unique entities separéte from
their components. It therefore clearly lacks
the features for expressiveness and semantic
richness. To solve these problems and aug-
ment the data model for modeling the behav-
ior of documents, we add the notion of com-

posite structures{composition) as a primi-

tive construct in the basic data model. Com-
posites can be used for modeling knowledge
about’ documents through basic data
abstraction techniques of classification,
generalization, aggregation, and association.
Composite structures use the specialization
construct(IS_A) and the composition con-
struct(HAS-A) to build structures which
are more abstract than the actual document
instances. As a. specialization construct,
composites support document abstraction at
various levels using Classification and
Generalization hierarchies. As a composition
constract, composites support the conceptual
(aggregation) and spatial(association) rela-
tionships between various document compo-

nent entites.

4.1 Formal Model of Distribut-
ed HyperDocument

Before proceeding further, we provide a
formal mode of a distributed
hyperdocument. A hyperdocument as a
whole may be modeled as a hyperlinked
structure of Content Objects(CO) (or nodes).
This view is illustrated in Figure 5. Each
Content Object is an information conveying
element of the hyperdocument, typically
such information being presented to and per-
ceived/interpreted by the human operator
“in” the User Interface(UI) of the applica-
tion. We use the term, Content Object, %o

refer to any “document” in the usual word

L1k FHIR Multimedia Document Databases 51
Domain $#1 < COMMUNICATION BETWEEN DOMAINS = Domain #2
(if remote, via network protocol)
Content
Object Document Composite

Hyperlink

Hyperlink
between

Document Composite

Across Domains

|
ntent objects @—@__ [—@_@ <

i

[€G—{cd
Ncd—i{d

Document Composite

Figure 5 : Distributed Hyperdocument as Hyperlinked Content Objects

processing sense, SGML encoded document
or any other multimedia file as shown in the
document containers in Figure 5. Within
such a document there may be “contextual
links” that provide hierarchical and sequen-
tial structuring of the COs that make up the
document ;if a hyperlink to such a document
is activated then there may be viewing/im-
aging steps automatically invoked by the
contextual links, such as moving from page
to page in a laid out(final form) document.
Multiple CO formats (data structures) are
allowed to “interface”(be linked) to the
hyperdocument. Each content object type
must provide its own methods for
formatting (content layout), viewing, edit-
ing, placing and deleting link ends.
Hyperlinks are allowed between objects as

long as the rules of data interchange/access

are followed and the links conform to the se-
mantics of the standardized methods defined
for content objects. For instance, links can
be placed from the World Wide Web docu-
ments to Gopher objects or FTP objects.
Content Objects may be linked as a whole
object or at addressable points within the
substructure of the content(e.g., at a partic-
ular word within a paragraph). The require-
ment for “location or addressing models”for
each content object format 1is the
responsibility of the defining standard(and/
or- reference implementation) for that for-
mat. As a practical matter the “open proto-
col” must have a way of identifying the
points to be linked to (link ends or anchors).
Requirements for hyperlinking and location
models are thoroughly explored in the
HTML[Berners-Lee and Connolly 1994]

52 Ravi S. Kalakota and Andrew B. Whinston

gloletsjo] & A

and HyTime[IS0-10744 1992] standard.
The HTML and HyTime standard specify
how certain concepts common to all
hypermedia documents can be represented
using SGML.. These concepis include : asso-
ciation of objects within documents with
hyperlinks, placement and interrelation of
objects in coordinate space and time, and in-
clusion of non-textual data in the document.
An “object”(similar to our Content Object)
m HTML and HyTime are part of a docu-
ment, and is unrestricted in form~it may be
video, audio, text, a program, graphics, ete.
However, HyTime does not specify how doc-
ument objects are encoded or interpreted by
computer programs. But by using standard-
ized linking, alignment, and addressing
methods, 1t ensures that those objects are
made available to programs in a standard-
ized way.

Content Objects are categorized as either
Processable(PCO) or Formatted(FCO). The
PCO is an editable, viewable or computable
form. It is a format supporting further revi-
sion and evaluation in authoring/editing and
dynamic information processing environ-
ments (such as software programs, content
based retrieval, linguistic analysis,
spreadsheeting, database accesses, modeling,
etc.). T he FCO is ready for presentation, dis-
play or imaging. Typically it is derived from
the PCO for a particular imaging device
(viewer/player)by formatting or otherwise

transforming the PCO(e.g., plotting a graph

from tabular numeric data, accessing re-
cords from a database by evaluating an SQL
query and formatting them for viewing,
eic.).

42 Aggregation For Compos-
ite Documents

Documents may be treated as Composite
Content OBject's using aggregation. Aggrega-
tion is an abstraction operation that clusters
related component document (or document
objects) and forms a higher-level object. In
other words, aggregation is the operation of
construct_ing more complex phenomena out
of a basic set of component documents. The
relationship between the lower-order object
and the higher order object is described as
“IS_PART_OF” relationship. Note that we
use the term objects rather than documents
to imply a difference in the level of granu-
larity. For example, a compound document
such as a company’s annual report, is an ag-
gregation of component document instances
such as charts, graphs, tables, spreadsheets
and textual paragraphs. Aggregation sup-
ports the notion of inclusion. Inclusion can
be implemented within the hypermedia net-
work itself as opposed to a layer on top of
the network. For example, a compound docu-
ment can be a part of a document network
that is referenced by other documents rather
than being a separate entity. Moreover, all

aspects of hypermedia (audio, video and im

1% 15N

Multimedia Document Databases 53

ages) should support inclusion (or IS_.PART
—OF) relations as a construct distinct from
standard(reference) links. Whether or not
inclusion relations share a common imple-
mentation mechanism with standard links is
unimportant, so long as the semantics of in-
clusion, as opposed to reference, are fully
supported. Both processable (PCO) and for-
matted (FCO) Content Object can be includ-
ed as component Content Object jn the
hyperdocument; it is thus possible for both
the PCO and the FCO of the same object to
co-exist in the same hyperdocument(e.g., a
Postscript formatted document derived from
an SGML/HyTime source) and be linked to
avoid time consuming derivations such as
formatting or other compute-intensive con-
tent transforms(e.g. changing color model,

decompressing an image format).
4.3 Document Association

Association is the assignment of document
instances and aggregated entities to sets,
using criteria different from those used for
classification. Association is wuseful as
hypermedia systems tend to have difficulty
with rapidly changing information. This dif-
ficulty arises from the essentially static na-
ture of the hypermedia data model which en-
codes information into a collection of inde-
pendent nodes interconnected into a static
network. This network does not change un-
less it is explicitly edited by the user or some

other external agent. In particular, the net-

work cannot reconfigure itself in response to
changes in the information it contains. This
lack of ‘dynamic mechanisms limits the
utility of hypermedia in many task domains.
Knowledge about the critical dimensions of
the document space, the characteristics
which distinguish one document from anoth-
er, and appropriate naming schemes devel-
ops over time as the users become familiar
with the information. A problem arises be-
cause the referencing or linking tasks all re-
quire the user to have such knowledge up
front. As the knowledge of the information
space evolves, previous organizational com-
mitments or structures become obsolete.
Association allows the definition of new
names for a collection of document in-
stances. There are many ways the associa-
tions between documents may be captured;
as binary associations of entities, as n-way
associations, as physical links between two
entities or as logical links. A physical link is
one where one document component con-
tains a reference that denotes the location of
another document component in storage. A
logical link is where one document compo-
nent contains a value that identifies another
document component by one of its proper-
ties. It is the latter that we are interested in.
These names are in efect “persistent enti-
ties” that endure within the system from one
session to another. These named entities
serve as the starting points in the query ex-

pressions.

54 Ravi S. Kalakota and Andrew B. Whinston

dlojgtujol2 A

5. DOCUMENT DATABASE
NAVIGATION AND BRO-
WSING

A major premise of the work described in
this paper is that embedded knowledge pro-
vided by descriptive markup can be very im-
portant for document retrieval, query pro-
cessing and the design of user-document in-
terfaces. This extra knowledge provided by
descriptive markup allows us to design new
and sophisticated manipulation mechanisms
that conventional query and retrieval
systems cannot match. Our goal in this
paper 1s to bring about an integration of in-
formation retrieval and database systems in
designing retrieval tools for unstructured or
hybrid organizational data. In this section,
we first describe the challenges in integrat-
ing document network navigation with
query mechanisms or the “Query by Brows-
ing” paradigm. We then examine how struc-
ture-based search and retrieval is made pos-
sible by descriptive markup.

Any large database of structured docu-
ments will be accessed by casual or naive
users who are not experts in the subject of
the documents. Such users will typically

want to browse the database to locate items

in which they might be interested. The de-
sign of user interfaces for document data-
bases is an area in need of more attention as
existing user interfaces are often unfriendly
(text based)or difficult for non-experts to
use. In this section, we outline the design of
a “Query by Browsing” user-interface para-
digm, called HyBrow, that is appropriate for
“interactive browsing” through large SGML
encoded documents (such as technical manu-
als) and interlinked document networks. We
wish to avoid the traditional “type a query
of key words or phrases” interface (or con-
tent searches) popular in information retrie-
val environments and textual query lan-
guages. As a result, we are focusing on a
“move and zoom” interface that allows a
user to “navigate” around in an N dimen-
sional hyperdocument space with little or no
typing. The main reason for the “move and
zoom” interface is to allow the user to. un-
derstand the inter-document hypertext
structure and avoid the problem of being
lost in hyperspace [Nielsen 1990]. This re-
quires the development of sophisticated docu-
ment network visualization techniques cou-
pled with query and browsing methods for
documents (see Figure 6 below). Note by
document, we mean both individual content

object and the network of content objects.

H1E F15t Multimedia Document Databases 55
Document
Navigation/Browsing
Document User Interface for
Query/Search Document Visualization

Figure 6 : Different Facets of Document Manipulation

For the sake of understanding, we sepa-
rate the docunent manipulation problem into
two areas . Document Network “Query By
Browsing”and Document Content “Query

By Browsing”.

5.1 Document Network
“Query By Browsing”

Our approach is unique as we attempt to

integrate/interleave document network
search/query and document network naviga-
tion or browsing. This interleaving of query
and browsing takes place because they are
inter-related activities. Their relationship is
essentially this : a user will browse through
a large document network, identify the re-
gion in the document network which seems
to have documents he is inthrested in. The
user then queries this region(or subject
area) to further focus or narrow the search
area. The task of querying is analogous to
finding/extracting subtrees of the dccument

network structure, and mapping one struc-

ture to another. Here, we are making the as-
sumption that in interdocument networks it
Is possible to differentiate between
organizational links (see Figure 7b) and ref-
erential links (see Figure 7a).
Organizational links are important for im-
posing a logical structure on the hypertext.
Systems that have purely referential links
can quickly turn into a chaotic mess. A ref-
erential link is a pointer from one document
component (Content Object) to another.
These document components may be con-
tained in the same compound document. For
example, the World Wide Web (which has
only referential links)is an information
system containing enormous amounts of val-
uable information which cannot be retrieved
since there is no structure present. In this
environment, users either have to know the
exact location of the document or apply a
“hit and run”method of traversing the links
and making intelligent guess at each node to
get to the document of interest. Needless to
say this is ‘quite time-consuming and ineffi-

cient.

56 Ravi S. Kalakota and Andrew B. Whinston gloleluoj& A

P Referential Links

Links

Organizational

Figure 7a : Referential Hyperlinks -

Organizational links are used to create a
hierarchy while referential links are used to
cross ~ reference information. Since
organizational structure reflects certain se-
mantic infomation, it is quite possible to
have many co-existing hierarchical struc-
tures on the same body of information. This
is quite feasible with the notion of composite
structiures(especially with association struc-
tures described in section 4). We can imag-
ine multi-dimensional hypermedia struc-
tures consisting of links between composite
structures providing a higher level of
abstraction. Each composite structure creat-
ed by document association can be thought
of as a predefined category based on certain
attributes of underlying content objects
which are at a lower level of abstraction.
The user navigates through the
organizational hierarchy of the document da-
tabase by essentially traversing the lattice
structure that is created by these document
associations. Once the user has selected an
individual(coule be exiremely large(e.g.
book), then the user would have to use the

Referential Links Organizational Links
Figure 7b . Organixational Hyperlinks

logical structure of the document to repeat
the process of browsing and querying.

5.2 Document Content
“Query By Browsing”

In order to browse through structured doc-
uments, it is important to access purely
stuctural information about the document in-
stance being looked at. The structural infor-
mation is analogous to a table of contents
for a book. Structural information is provid-
ed through the descriptive markup. Descrip-
tive markup is used for specifying the logi-
cal components of documents such as chap-
ters, headings, paragraphs, figures, annota-
tions etc. and the hierarchical relationships
among these components within the docu-
ments. This has obvious implications for the
browsing and viewing. The logical struc-
tures supported by descriptive markup can
be very sophisticated. In the case of a
SGML docurhent the structural information
is available through the so-called Element

1L WIN

Multimedia Document Databases 57

Structure Information Set(ESIS). The imple-
mentation structure of a “query-by-brows-
ing”architecture of SGML document content
is shown in Figure 8. From the figrue, we
can see that the event stream that is flowing
from the SGMLS parser* to the ESIS inter-
preter is the key for document browsing.
First let us examine how the system
works. First, the user selects a document for
browsing. On receiving the user’s selection
the SGML document database send the se-
lected document instance to the SGMLS

ter stream of the document instance and in-
terprets the characters according to the
SGML declaration and the Document Typek
Definition. The result of this interpretation
is a parse tree of the document instance.
The parse tree contains information about
the elements of the document instance struc-
ture and their atiributes. This parse tree is
sent to the ESIS interpreter for further pro-
cessing as an event stream. To make this
clear look at the following SGML document
instance which is transformed into a parse

parser. The parser reads through the charac- tree.
USER
INTERFACE
/1IN
4
ESIS - SGMLS
Interpreter EAS Parser
Event Stream Containing T SGML Document
the Document Parse Trss Instance
SGML Document
Database

Figure 8 : Query-by-Browsing Implementation Architecture for a Document Content

{1DOCTYPE memo[

{(JELEMENT memo -- (subject, body))

{IELEMENT subject -~ #PCDATA)

{1ELEMENT body -~ (para-+))

({ELEMENT para - O%PCDATA)

B))

{memo)

{subject) Material Shortage on Production Line 2(/
subject)

(body)

(para) We are short of 50 PCB for satisfying custom- -

er orde number #50089.
(para) Please expedite the PCB order from supplier.
(/body)

(/memo)

The parse tree from the SGML parser will be :

MEMO START

SUBJECT START

#PCDATA “Material Shortage on Production Line2”

SUBJECT END

BODY START

PARA START

#PCDATA “We are short of 50 PCB for satisfying
customer order number #50089.”

PARA END

PARA START

#PCDATA “Please expedite the PCB order from

supplier.”
PARA END
BODY END
MEMO END

4. SGMLS is a free public~-domain parser written by James Clark for parsing SGML documents. It is available

from(ftp : //ftp.ifi.uio.no/pub/SGML/).

58 Ravi S. Kalakota and Andrew B. Whinston

doletsola Ay

Note that even though there are no end
tags on the PARA elements in the SGML
document instance, they are inferred by the
parser and end events are generated accord-
ingly. This parse tree is sent via the event
stream to the ESIS interpreter. The se-
quence of information is as if doing in—order
traversal of the parse tree. At each node in
the parse tree information is given to the
ESIS interpreter about the name of node
(called the elements’s Generic Identifier-GI)
and information about its attributes. Depend-
ing on the user’s request for browsing or
querying the ESIS interpreter would respond
appropriately and send the desired result to
the user interface. The user interface would
then format the results using a Format Spec-
ification language—-FOSI[MIL-M-28001A)
or DSSSL Adler 1994] and present the

results accordingly.

Conclusions

To summarize, the development of a coor-
dinated electronic document management
strategy for accessing and manipulation
structured multimedia documents involves
several issues that are consistent across ap-
plications. These issues can be classified into
the following categories :

- Data Model View--responsible for
structuring the storage of entire docu-
ments; parts of documents and the

hyperlinks between documents;

« User Interface—-responsible for com-
munication and interaction with end-
users. This involves the movement of
multimedia documents over computer
networks; and display and manipulation
of documents;

+ Model-Interface Translators—-which
synchronize the interface events(con-
tent or structure based queries)with the
data model view.

In this paper, we have addressed the fol-
lowing questions that were derved from the
above mentioned issues. First, how to encode
or represent the logical structure of docu-
ments.

To answer this question, a data model for
internal content representation using SGML
was presented. We then addressed the ques-
tion of organizing and structuring the encod-
ed documents into larger useful patterns
using the notion of composite structures. We
have presented frameworks for capturing
document behavior using the abstraction
techniques of document aggregation and as-
sociation. Finally, the critical issues concern-
ing user interface design for document col-
lections were discussed. We presented a new
paradigm called “Query by Browsig” that in-
tegrates the querying about document net-
works, with navigating hyper document
links to find information of preference. The
implementation strategy for “Query by
Browsing” individual document content was

discussed. Clearly, the strength of markup

F1E PR

Multimedia Document Databases 59

languages in supporting information reuse,
cross—-platform reformatting, intelligent nav-
igation, and executable interactive docu-
ments, will make it an integral part of the
future of database management systems. As
we move toward storing greater amounts of
information in documents rather than in re-
lational databases, research that was pre-
sented in this paper will be useful in design-

ing better information systems.

References

Adler, Sharon C. “DSSL-document Style Se-
mantics and Specification Language”,
ISO/IEC DIS 10179 : 1994. Text Compo-
sition—Document Style Semantics and
Specification Language(SAAL), 1994.

Akscyn, R., D.IL.. McCracken, and E. A.
Yoder, “KMS : A distribyted hypertext
for managing knowledge in
organixations”, Commun. of the ACM,
Vol. 31, No. v, 7 July 1988, pp. 820-
835.

Arnon, Dennis, “Scrimshaw : A Language
for Document Queries and Transforma-
tions”, Proc. Electronic Publishing 94
Conference (April 13-15, 1994, Darm-
stadt, Germany), John Wiley and Sons,
1994.

Berners-Lee, B., R. Cailhau, J. Groff, and
B.Pollermann, “World-Wide Web : The
Information Universe”, CERN Technical

Report (the European Laboratory for Par-

ticle Physics), Geneva, 1992.

Bertino, Elisa, Rabitti, Fausto, and Gibbs,
and Simon, “Query Processing in a Mul-
timedia Document System,” ACM
Transactions on Office Systems, Vol. 6,
No. 1, January 1988, pp.1-41.

Botafogo, R.A. and B. Shneiderman, “Identi-
fying aggregates in hypertext struc-
tures”, Proceedings of Hypertext 91,
ACM, New York, Dec 1991, pp.63-74.

Bryan, Martin, SGML : An Author's Guide to
the Standard Generalized Generalized
Markup Language, Wokingham/Reading
/New York : Addison-Wesley, 1988.

Chomsky, Noam, “Three Models for the De-
scription of Language”, IRE Transac-
tions on Information Theory, Vol. 2, No.
3, 1956. pp. 113 : 124.

Conklin, J., “Hypertext : an introduction
and survey”, IEEE Computer, Vol. 20,
No. 9, 1987.

Coombs, James, Allen, Renear, Steven J.
Derose, “Markup Systems and the Fu-
ture of Scholarly Text Processing”,
Commun. of the ACM, Vol. 30, No. 11,
1987. pp. 933-947.

Croft, B. and R. Thompson, “13R : A New
Approach to the Design of Document
Retrieval Systems,” Journal of the Amer-
ican Society for Information Science, Nov
1987.

Donzeau-Gouge, V. and G. Kahn, B. Lang,
and B.Melese, “Document Structure and

Modularity in Mentor”, SIGPlan Notices

60 Ravi S. Kalakota and Andrew B. Whinston

glojetu o) g

Vol. 19, No. 5, May 1984.

Furuta, R., “Concepts and Models for Struc-
tured Documents”, Structured Docu-
ments, Cambridge Series on Electronic
Publishing 1987, pp. 9-27.

Goldfarb, Charles F., The SGML Handbook,
Edited and with a foreword by Yuri
Rubinsky, Oxford : Oxford University
Press, 1990.

Goodman, D. “The Complete Hyper Card
Handbook”. Bantam Books, New York,
1986.

Halasz, F. and M. Schwartz, “The Dexter

model”, K.
Gronbaek and R.Trigg, Eds.,Commun. of
the ACM Vol. 37, No. 2, Feb 1994.

Halasz, F.G. “Reflections on NoteCards :

hypertext reference

Seven issues for the next generation of
hypermedia systems”, Commun. of the
ACM Vol. 31, No. 7. July 1988, pp. 836
-855.

Haviland W., “SGML Frees Information”,
Byte, June, Vol. 17, No. 6, 1992, pp.
279.

Herwijnen, Eric. van, Practical SGML.
dordrecht / Hingham, MA : Wolters
Kluwer Academic Publishers, 1990.

ISO-8879, Information Processing—; Text and
Office Systems-Standard Generalized
Markup Language(SGML). Intermational
Organization for Standardization, Ref.
No. ISO 8879 : 1986(E). Geneva/New
York, 1986.

1SO-~number 8893, Information Processing-

Text and Office Systems—Open Document
Architecture(ODA). International Organi-
zation for Standardization, Ref. No. ISO
8879 : 1986(E). Geneva/New York,
1986.

ISO/IEC-10744, Information - Technology-
Hypermedia/ Time-based Structuring Lan-
guage{ HyTime). International OTga}ziza-
tion for Standardization, Ref. No. ISO
8879 : 1986(E). Geneva/New York,
1992.

Kahle, B., Wide Area Information Systms
(WAIS), Technical Report, ThinKing
Corp. Boston, 1991.

Kimura, G., A Structure Editor and Model for
Abstract Objects, Unpublished Doctoral
Dissertation, Unversity of Washington
at Seattle, July 1984.

Knuth, Donald, “The Errors of TEX”, Soft
ware- Practice and Experience, Vol. 19,
No.7, July 1989, pp. 607-685.

Lamport, L., “Document Production : Visual
or Logical”, Notices of American Mathe-
matical Society, Vol. 34_, 1987.

Lamport, L., LaTEX : A Document Prepara-
tion System, Addison-Wesley, Reading,
Mass., 1986.

MacLeod, lan, “A Query Langauge for Re-
trieving Information from Hierarchic
text Structures”, Compueer Journal, Vol.
34, No. 32 1991, pp. 254-264.

MIL-M-28001A : US Department of De-
fense, Military Specification, Markup Re-

guirements and Generic Style Specifica-

H14E MR

Multimedia Document Databases 61

tion for Electronic Printed Outlput aend
Exchange of Text(SGML), CALS Phase
1, 1 Core Requirement Document. MIL~
M-28001A Draft(Superseding MIL-M-
28001, 15 December 1988). 17 July
1989.

Naur, P. et al.,, “Report on the Algorithmic
Language, ALGOL 60”7, Commun. of
ACM Vol. 3, No. 5, 1960, pp. 299-314.

Nielsen, J. “The art.of navigating through
hypertext,” Commun.. ACM\Vol. 33, No.
3, 1990, pp. 296-320.

Notkin, D., Interactive Structure-Oriented
Computing, PhD Thesis, Carnegie Mellon
University, Department of Computer
Science, CMU-CS5-84-103, 1984.

OpenDoc Technical Summary, Component In-
tegration Laboratory, Apple Computer
Inc., 1993,

Peels, A., N. Janssen and W. Nawijn, “Docu-

ment Architecture and Text

Formatting”, ACM Transactions on Of-
Jice Information Systems Vol. 3, No. 4,
1981.

Raman, T., Audio System for Technical Read-
ings, Unpublished Ph.D. Dissertation,
Cornell University, Ithaca, New York,
1994.

Reps, Thomas, and T. Teitelbaum, 7The
Synthesizer Cenerator: A System for
Constructing Language—Based FEdilors,
Springer—Verlag(Texts and Mono-

. graphs in Computer Science), New
York, 1989.

Salton, G. “Developments in automatic text re
trieval”. Science Vol. 253 : 5023, Aug
30, 1991, pp. 974-980.

Stonebraker, M. and G. Kemnitz, “The
POSTGRES Next-Generation Database
Management System”, Commun. of
ACM, Vol. 34, No. 10, 1991, pp. 78-92.

