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AN ERROR ANALYSIS OF THE DISCRETE GALERKIN
SCHEME FOR NONLINEAR INTEGRAL EQUATIONS

YouNG-HEE KIM AND MAN-SUK SoNG

1. Introduction

We employ the Galerkin method to solve the nonlinear Urysohn inte-
gral equation

(1.1) z(t) = f(t)+/Dk(t,s,x(s))ds (te D),

where D is a bounded domain in R¢, the function f and & are known
and z is the solution to be determined. We assume that D has a lo-
cally Lipschitz boundary ([1, p. 67]). We can rewrite (1.1) in operator
notation as

z=f+Kz.

We consider (1.1) as an operator equation on Ly (D) and assume
that K is defined on the closure Q of a bounded open set @ C Leo(D).
Throughout our analysis we put the following assumptions on (1.1).

Al: f € Loo(D);

A2: K is a completely continuous operator in Lo (D), which has a

fixed point zg;

A3: K is Fréchet differentiable at the solution zg of (1.1) and 1 is not

an eigenvalue of the Fréchet derivative L = K'(zy);

A4: For a given z¢ €  and € > 0, assume that K(z) is twice differ-

entiable and K" (z) is bounded on B(zg,€) C Q.

The discrete forms of the Galerkin method and the iterated Galerkin
method arise when the required integrals appeared in the two methods
are calculated by means of the numerical integration.
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In the Galerkin method, we seek the approximation of the form

n
Zp = E a;u;,
i=1

as a solution of the equation (1.1) where the {u;}; consist of given
basis functions for a certain n-dimensional space U,, contained in R(D).
Here R(D) is the space of bounded functions defined on D which are
continuous almost everywhere and i,, will be taken to be of finite-element
character(see Section 2 for further details).

The coeflicients a,, = [al,...,an]T in z, are obtained from the
Galerkin equations

(1.2) Gra, — By(a,) = wy,

where G, is the n X n Gram matrix having (¢, j)th element (u;,u;),

n
B,(an) is the n x 1 vector having i~th element (u;, K(Z a;u;)), W, =
j=1
[(u1, Y, ooy (un, f)]T and (-,-) denotes the usual L inner product over
D. Here we use a L, setting so that we obtain our error estimates in
the Lo norm. Clearly, our assumptions about the basis functions and
K ensure that the elements of G,, B, and w,, in (1.2) are well defined.
Assuming that such z, exists, the iterated Galerkin solution z!, is
then given by

(1.3) h=f+Kan=f+ KD aiu).

=1

In (1.2), we see that the practical implementation of the Galerkin
method requires the calculation of the integrals (u;, K (Z;’___l a;juj)) (1<
¢ <n)in B, and the integrals (u;, f) (1 <i < n) in w,, while calculat-
ing x;, involves the integrals K(3_!_, aiu;) in (1.3). To calculate these
integrals, numerical integration is often used. Thus the actual equations
to be solved are

(1.4) Gran — Ba(3,) = Wy
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and the discrete Galerkin solution z,, is given by

n
?fnz E 5,'11,‘.
i=1

Here a, = [d1,...,dn]7 is the numerical solution of the nonlinear alge-
braic system (1.4), which is obtained from an iteration method ([13}).
1§n(5n) and W, are the approximations of B,(a,) and w, respectively
when the numerical integrations are used to solve the integrals. When we
approximate the integrals K (3 .., a;u;) by K(} I, &u;), the discrete
iterated Galerkin solution is given by

(1.5) 3, = f+ K&, = f + K aw).

i=1

In 1987, Joe [7] gave an analysis of the discrete Galerkin scheme (that
is, the discrete Galerkin and discrete iterated Galerkin methods) under
suitable assumptions on the quadrature errors for the Fredholm integral
equation of the second kind. In this paper, we generalize his results for
the discrete Galerkin scheme for the linear equations into the nonlinear
case.

In Section 2, we give some necessary background materials including
estimates of the orders of convergence for the Galerkin scheme. We
also review the prolongation and restriction operators with some of their
properties, which are used to give our error analysis. The analysis of
the discrete Galerkin scheme is given in Section 3, and some numerical
examples are given in Section 4.

2. Preliminaries

For a non-negative integer m and 1 < p < oo, we equip the Sobolev
space W,*(D) with the usual norm ||-||m,p,p ([1], p. 44). For convenience,
we assume that all functions are real-valued.

For later use, we need to define P,, the (unique) L, orthogonal pro-
jection onto the space U,,. For all ¢,, € U,,, the operator P, satisfies

(2.1) (Png, #a) = (g, ¢n) for g € Loo(D).
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As mentioned in the Introduction, the Galerkin approximation , be-
longs to a finite-dimensional space U, C R(D), which is of finite-element
character. For our purpose, we do not give any detailed description of U,
is not required, but we shall assume that the space has typical proper-
ties of piecewise polynomials of degree < r — 1, with r a positive integer.
Specially, we shall assume the followings : first, D is partitioned into
disjoint subregions of maximum (Euclidean) diameter A = h,, where h
is related to n by n < ch™* with A > 1 (usually A = d); secondly, the
error of best L, approximation by elements of U, satisfies

(22) J0f g = ¢nllp2 < ch™ |lgllm,pp for g € WH(D),

where m* = min{m,r} with ¢ independent of p,n and ¢; and thirdly, P,
is a uniformly bounded operator on L,(D) (1 < p < o0 ) so that

(2.3) |Pallz, <c1 < o0

with ¢; independent of n and p. In this paper, ¢,¢;(1 < ¢ < 5) denote
generic constants and will be independent of n.

For a given Uy, we choose the basis functions {u;}7, of U, satisfying
some assumptions. Accordingly, we assume that the {u;}?; are such
that the inverse Gram matrix G;! satisfies

-1 — -1y, -
(2‘4) “Gn ”00 - 11;1?%1:2:1 l(Gn )']l S ch
]=
for some v > 0. Here (G;');; (1 < 1,5 < n) denotes the (z, 7)th element
of G;1. We also assume that the basis functions satisfy

n
(2:5) 1Y il o < e
=1

for some constant ¢. Since U, C R(D) C Loo(D) and U, is of finite-
element character, it is reasonable to give the assumption (2.5) to the
basis functions having local support.

Now we give the following results concerning the properties of the
Galerkin solution z,, and the iterated Galerkin solution z], ([2], [9]). We
know that assumptions A2-A4 imply that z¢ is an isolated fixed point
of K, of nonzero index ([9)]).
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THEOREM 2.1. Suppose that A1-A4, (2.2) and (2.3) hold. Then for
sufficiently large n,
(1) zn and z!, exist uniquely within some sufficiently small neigh-
borhood of zq in U, and Loo(D), respectively,
(11) ”zO - zn”oo,D S 61”550 - Pn:L'O”oo,’D’
(111) ”.’1)0 — w’n”w,D S Cz”K.TL'o —_ KanOHOO,'Da

for some constants ¢; and c3.

Proof. The results follow from Atkinson and Potra [3] and Atkinson
[2).

In order to give quantitative estimates of the orders of convergence z,
and z!,, we shall make some smooth assumptions on the solution zy and

(the derivative of) the kernel k. We define Iy by l;(s) = k.(t,s,z0(s))
for t,s € D, where k,(t,s,u) = %k(t,s,u).

THEOREM 2.2. Suppose that the hypotheses of Theorem 2.1 hold; let
zo €W (D) withl > 1; and let I, € W™(D) (t € D) withm > 1, where
sup||ly|lm,1,p0 < 0o. Then

t,

(i) llzo = Znllco,p < b’ [|2ollt,00,,
(i) [lz0 — @hlloo,n < ch?|20llt,00,p,
where ¢ = min{m* + *,2/*} with m* = min{m,r} and [* = min{l,r}.

Proof. In virtue of Theorem 2.1, it suffices to show
(2.6) (I = Pa)zolloo,p < ch’ [[2olt,00,0,

for the proof of part (i). From the definition of P, in (2.1), it is clear
that P,¢n, = ¢, for all ¢, € U, and hence

I(I=Pr)2olloo,p = (I=Pr)(@o—¢n)lloo,p < (14| PallLes) |0~ Grlloo,p-

Then the result (2.6) follows from (2.3) and (2.2) with an appropriate
choice of ¢,.

To prove part (ii), we first note that (2.1) gives (¢,,(I — Py)zo) =0
for any %, € U,. From the definition of L, we obtain

(2.7) K(Pnzo) — K(zo) = L(Ppzo — o) + tn,
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with ¢, = o(||Przo — z0]|). The first term of the right side is bounded
as following :

|L(Przo — 20)|lco,p < sup [{Te, (I — Pn)zo)
= sup [(le = ¥n, (I ~ Pn)zo))|
< sup |l = ¢nll1,p|(T = Po)zolleo,p
< ™ || 2o)|1 oo,

The last inequality follows from (2.2) with an appropriate choice of ¥,
and (2.6). Hence the result follows from (2.7) and Theorem 2.1 (iii).

REMARK 1. Let p and ¢ satisfy 1/p+1/¢=1with 1 < p,q < c0. By
the general Holder’s inequality, we can show that Theorem 2.2(ii) is also
true when z, € W;(D) and l; € W*(D) with supl|ly||m,q,p < o0.

tl

Now we discuss the prolongation and restriction operators that are
used for the analysis of the discrete Galerkin scheme in the next section.
These operators serve as a link between L, (D), on which (1.1) is defined,
and Euclidean space R" in which the equations for the approximate
solution are solved. Our treatment depends on that of Joe [7].

For b, = [b1,...,b,]T € R, the prolongation operator ¢, : R® — U,

is defined by
ann = Z biui-
=1

By using the definition of the intermediate operator s, : Loo(D) — R"
given by
Sng = [(uhg): vy (umg)]T for g€ LDO(D)a
we define the restriction operator r, : Loo(D) — R® by rpg = G 1sng.
Here we choose the norm in R" to be
Ibrllrm = [lgnbnlloo,p

for b, € R™. From (2.5), we have a relation of the norm in R™ with the
usual co-norm for R”, ||bnlle = max |bi] by

1
(2.8) [balle < clballec < c2llG7 [1&IballRn-
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The second inequality follows from (3.2) in Joe [7). Now we give the rela-
tionship between the induced matrix norm in R™ and the usual maximum
row—sum norm for matrices.

LEMMA 2.3. For any n X n matrix A,,

| 4nllzn < ch™%7)| Anlloo-

Proof. See Joe [7].

Now we summarize useful properties of ¢, and r, in the following
lemma.
LEMMA 2.4,
(i)  Tngn = I, the identity in R",
(1)  gnrn = Pn,

(i) llgnll = 1,
(iv)  |lrn]l £ ¢, for some constant c.

Proof. Part (i) follows trivially from the definition of r, and ¢, with
the orthonormality of {u;}. We can find the proofs of the other part in
Joe [7].

3. Discrete Galerkin scheme

In this section, we give the orders of convergence of the discrete
Galerkin and discrete iterated Galerkin solutions. For our purposes,
it is convenient to introduce the error operators E;, E;, E3 and E4. Sup-
pose ¢n, Yn,n € U, C R(D) and t,s € D. Then F1, E,, E3 and E; are

defined as follows:

Ey(¢n,9) = quadrature error in evaluating the integral

/Dg(3)¢n(s)ds for g € R(D).

Ey(¢n, K¢n) = quadrature error in evaluating the integral

/D /D k(t,8,%n(s))dn(t)dsdt.
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E3(¢n, K'(¢n)¥n) = quadrature error in evaluating the integral

/ [ Eu(t, 5, 9n(5) Wbn(s)gm(t)dsd
DJD

E4(K+n(t)) = quadrature error at t € D in evaluating the integral

f k(t,s,%n(s))ds.
D

The definition of E5 includes the situation in which K1, is evaluated
exactly and E; is only for the quadrature error at ¢ € D in evaluating
K1,. To ensure that point evaluations of f (and hence Ey(¢n, f)) are
well defined, we replace assumption Al by

Al': f € R(D).

From the definition of z,, we can rewrite the Galerkin equations in
(1.2) as
(uir n) = (us, Kza) = {ui, f) (1<i<n)

With the prolongation and restriction operators as defined in the previ-
ous section, we see from the above equation that the Galerkin equations
in (1.2) may be written as

(3.1) a, —r,K(gpa,) =r,f.

Then the equations for the discrete Galerkin method given by (1.4) may
be written as

(3.2) 5,, - "'nI?(Qnsn) = fna

where 7, K(gn8n) = G71By(8,) ~ roK(gnan) = Go1B,(a,) and f, =
G lW, = rpf = G w,.

We first obtain the following result for the discrete Galerkin method.
Recall that v > 0 is defined by ||G;||co < ch™7.



Error analysis of the discrete Galerkin scheme 431

THEOREM 3.1. Suppose that Al', A2-A4, (2.2), (2.3) and (2.4) hold;
let zo € W! (D) with | > 1; and let the quadrature errors be such that

() |Bi(us, £l S ch®Y (1<i<n), §>0,

(b) 1E2(ui, Kzp)| < ch$*7 (1 <1< n), £€>0,

() |Bs(ui, K'(za)u;)| S ch#+2Y (1<4,j <m),
where p > A > 1 and )\ satisfies n < ch™>.

Then
“-7’0 - En”oo,’D S Chea

where 8 = min{l,r, 6, }.
Proof. From (3.1) and (3.2), we obtain

an — 5n =rnf - fn + {TnK(qnan) - rnk(Qnan)}
+ rnI?,(Qnan)(Qnan - Qngn) +tn,

where t,, = 0(||gnan — gnan||). From the definition of z,, we can rewrite
the above equation as

(In - "'nI’;’,(xn)Qn)(an - an)

(3.3) _
= Tnf - fn + {rnK(Qnan) - TnK(Qnan)} + 1,

The left side of (3.3) is rewritten as (I, — G;lﬁn)(an ~3,), where H,, is
the n x n matrix having (z, j)th element (u;, K'(z,)u;). Here we denote

H,, the matrix having (7, j)th element (u;, K'(2n)u;). From Lemma 2.3
and (2.4), we obtain

7K (Zn)an — K (0)gnllrr = |G (Hy — Hy)| e
< ch™3||H, — Hpl|oo-

It follows from the assumption (c) that
| Hyp — I~In]|°o < neh*t3Y < clh%7+“—)‘,

and hence ||[r,K'(z)qn — rnl?'(xn)qn“Rn — 0 as n — oo. From Lemma
2.4, |lgn|| = 1 and |jry|| < c¢. Then the application of Theorem 3.2 in
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Thomas [12] shows that for sufficiently large n, (I, — rn.fz"(:l:n)(]n)'1
exists and is uniformly bounded. Hence from (3.2) and Theorem 2.1, we
see that &, (and thus 7,) exists uniquely.

From Theorem 2.2 (i), we have

”370 _ xn”w’p < chmin{l,r} < cho

and now we estimate the bound of ||z, — T4| e, D-
In terms of the prolongation operator g¢,, we have

|Zn — Zalloo,» = llgnan — gnnllco,p = llan — &nlrn.

Since ||(In — rnI?’(xn)qn)‘IHRn is uniformly bounded by c¢; (say), we
obtain from (3.3) the fact that
[Za—Znllco,p = llan — anl|r~
(34) < ca{lirnf = fallRm + IraK (gnan) = raK(gnan)l|zn
+ csllap — Ak }-
We easily have from (2.8), (2.4) and assumption (a) of the theorem the

fact that
Iraf — fallrn < ch® < ch®.

For the second term of the right—hand side of (3.4), we use (2.8) to obtain

lIrn& (gnan) = raK (gaan)llze < eallrnk(gnan) = raK (gnan)lloo
< &al|G7 ool Ba(an) — Ba(an)lloo
_<_ 04’2,-_’765’1,5.*-‘7 S Cho.
Here the third inequality follows from (2.4) and assumption (b). This
completes the proof.

REMARK 2. For consistency of the discrete Galerkin method, it is
clear that we require 6,¢ > min{/,r}.

Now we let L* be the adjoint of L = K'(z¢) with respect to the inner
product (-,-). Then we define the resolvent kernel g:(s)(t,s € D) by the
unique function satisfying

(3.5) I-L%g:=1 (teD),
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where [, is given in Section 2. Let I(¢,s) = l¢(s). Obviously, L is compact
in Loo(D) by assumption A3. Under the assumption on I(t,s) given
below in Theorem 3.2, it can be shown that L* is compact in L;(D) and
is a bounded operator from Li(D) to W{*(D) ([10]). Hence we conclude
that g; € W™ (D) with sup||g¢||m,1,p < 0.

"

THEOREM 3.2. Suppose that Al', A2-A4, (2.2), (2.3) and (2.4) hold;
let 2o € W) (D) (with | > 1); let sup||DEDEI(t, )|loo,p < 00 for 0 <
t

la| € z (with 0 < z < 1) and 0 < |B] < m (with m > 1); and let the
quadrature errors be such that

(a) condition (c) of Theorem 3.1 holds,

(b) sup, |E4(KT,(t))| < ch?,p>0,

(c) llzo = Enlloo,p < kS, >0,

(d) sup; |E1(Pngs, )| < ch,n >0,

(e) sup, |Eo(Prgt, KTp)| < ch™,7 > 0.
Then

|20 — &3 |lco,p < ch?,

where 0 = min{¢, p,n,2(,m* + z + ¢} with m* = min{m,r}, I* =
min{l,r} and ¢ = min{m* + *,2[*}.

Proof. As in the proof of Theorem 3.1, we conclude that Z, exists
uniquely from assumption (a), and hence it is meaningful to give as-
sumptions (b) and (c) for Z,. Moreover, it is clear that 77, exists and is
unique.

Now we have

“530 - "f’n”oo,'D < on - x’n“oo,D + Hx'n - 5n”oo,’D’

and Theorem 2.2 (ii) shows that ||zo — 2} ||co,p < ch?. Hence it suffices
to obtain the bound of ||z}, — Z},||co,p. From (1.3) and (1.5), we have

(3.6) |5 — EnlIOO,D < |[Kz, — kin“oo,v + [|[Kzn — KZp|lco,p-

The bound of the first term on the right-hand side of (3.6) follows from
assumption (b).
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To bound the second term, we rewrite it as follows:
(3.7) Kz, - K%, = K'(20)(2n — Tn) + $n + Sn,

where sp, = o(]|z» — Zo|) and 5» = o(||Z, — 2¢]|). We obtain from (3.5)
the fact that for any t € D,

K'(z0)(zn — £a)(t)
= (lt, gn@n — qnan)
(3.8) = ((I = L*)gt) gn@n — gnan)
= (Pagt, (I = L)(gn@n — gnan))
+((I = Pa)gt, (I = L)(gnan — gnan)).

From (3.1), (3.2) and some algebraic manipulation, we obtain

(39) (Pngta (I - L)(qnan - Qnsn)) = (Pngtv Qn(rnf - fn))
+ (Pagt, gn{raK(gndn) — 7K (gndn)}) + tn + tn,

where t, = o(||zn — 2o||) and t, = o(||F, — o). Now Lemma 2.4(ii)
gives ¢,7, = P, and hence we have

(Pngty gn(rnf — fn)) = (¢nTngt, gn(raf — fn))
= (rugt) Gu(rnf — fa)
= (rage) (Wn — Wy)
= Ey(Pngs, f)-

Similarly, we obtain
(Pngt, @n{rnK(gndn) = rnK(gndn)}) = Ex(Pagi, KTn).
Hence it follows from (3.8) and (3.9) that
|Kzn—KZn|co,p < Sl:P{ |E1(Prgs, f)| + |E2(Pnge, KZ4)
(3.10) + [(ge — Pnge, (I — L)(gnan — gnan))| }

+aillen = zollee,p + e2l|Tn — 2015 -
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We obtain the bounds of the first two terms in supremum in (3.10) from
assumptions (d) and (e). We note that (I — P,L)(zn — Zn) € U, for
the bound of the third term. Then from (2.1) we have (g; — Prg;, (I —
P,L)(zn — T,)) = 0. Hence we obtain

S‘;P |(gt — Pphgt, (I - L)(Qnan - Qnan))l
= sup |(g¢ — Pngt, (PaL — L)(zn — Z0))|

< supllg = Pugell1 Dl Pal = Lo 120 = Znlloo2-

Since g; € W™(D), sup||g: — Prg:ll1,p < ch™" by the similar proof as
t

that of (2.6). Moreover, we know that L is a bounded operator from
Loo(D) to WZ (D) under the assumption on [ ([10]), and hence it follows
that ||PnL — L| 1., < ch®. From assumption (c), we have

s‘ipi(gt — Pagt, (I — L)(gnan — gn8n))| < ch™ -c1h® - cah® < ch”.

The last two terms of (3.10) are bounded by 2* and 2¢, and thus by o.
This completes the proof.

4. Numerical Examples

One can usually determine the orders of convergence of T, and 7,
when the basic functions and the quadrature technique(s) have been
chosen to solve a particular integral equation.

To illustrate our results, we consider the situation in one dimension.
Thus we employ the integral equation

b
(4.1) z(t) = f(¢) +/ k(t,s,z(s))ds for t € D =a,b],

where —0o < a < b < oco. We assume that f € W2T(D) and k €

W27(D x D x R), and hence z € WZ7(D). Since f and k are smooth, we

use interpolatory quadrature rules to evaluate the required integrals.
Let X = {zg,...,zN} , Wherea =z < z1 <+ <zZy_; <2ZN =),

be a mesh on [a, b with A = 121_%?5\](3:,'—:1:,-_1). We assume that the mesh is
_z_
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quasi-uniform, that is, there exists a constant c such that h/ linli<nN(m,~ —
)

zi—1) <c Thenforn=(N-1)(r—v)+rand 0 < v <r, we take U, to
be §¥(X), the space of piecewise polynomial of degree < r — 1 on each
(zi-1,2;) (1 £i < N) and has v —1 continuous derivatives on (a, ). We
note that n < ch™!; the approximation property (2.2) holds for S¥(X)
([6]); and P, is a uniformly bounded operator on L,(a,b) (1 < p < o)
under the quasi-uniformity condition on the mesh ([5]). Moreover, the
inverse Gram matrix G ! satisfies |G} ||oc < ch™! ([11]), and hence the
value of v in (2.4) is 1.

Specially, we consider the case when r = 2 and v = 1, and then we
take {u;}", to be the piecewise linear functions. We know that the
piecewise linear functions satisfy

n
1 tilllop = 2

1=1
and have derivatives satisfying
(4.2) | D7 tilloop < ch™F  (1<i<n, j=0,1)

Suppose that we approximate the integrals (u;, K'(zn)u;),
(uj, f) and Kz, for 1 < 7,5 < n, by using the ¢(> 2) nodes Gauss-
ian quadrature rule which exact for the polynomials of degree < 2¢q — 1.
We employ the product form of the one-dimensional rule for the double
integrals (u;, K'(zn)u;) with 1 < ¢, < n. Then we use the Broyden’s
method ([8]) to solve the nonlinear system appeared in equation (1.4).

Now we examine the orders of convergence of the discrete Galerkin
methods for the following equation

1
(4.3) z(t) = f(1) +/(; Z+_s—}|—7(.;5ds for 0<t< 1.

Here f is so chosen that for ¢ € [0,1], z¢(t) = €' is the solution of the
equation (4.3). In this case, the constants | and m can be chosen as
large as desired and zo € C?7[0,1]. We have from Theorem 2.2 that
lzo — Znlloo,p = O(R?) and |lzo — zh]lco,p = O(h*). It can be shown
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that we can take p = % > A =1and § = £ =2 and hence we obtain
lzo — ZTpnllo,p = O(h?) in Theorem 3.1 with (4.2). From Theorem 3.2
we have n = 7 = p = z+( = 4, so that ||z — 7/, ||, p = O(h*). Atkinson
and Potra [4] obtained the same orders in a different way for the integral
equation (4.3) when zo € C?7[0,1]. The numerical results are given in
Table 1 and Table 2 for ¢ = 2 and ¢q = 4, respectively.

If we choose f so that zo(t) = exp(|t — 2]) is the exact solution of
(4.3), then z¢ and f are not continuously differentiable any more. But
zo € W2T(D), and hence we can apply Theorem 3.1 and Theorem 3.2 to
(4.3) with I and m sufficiently large enough. The numerical results are
given in Table 3 and Table 4 for ¢ = 2 and ¢ = 4, respectively. Hence
we obtain the same orders of convergence of two methods that we have
in above case.

N n [|z0 — Znllco,D ratio [lzo — T |loo,D ratio
2 3 5.100E-2 3.615E-4
4 5 1.344E-2 3.79 2.684E-5 13.47
8 9 3.452E-3 3.89 1.783E-6 15.05
16 17 8.740E-4 3.95 1.133E-7 15.74
32 33 2.198E-4 3.98 7.151E-9 15.84
Table 1. zo(t) = et, q=2;
N n llzo = Zallco, ratio llzo — Zhllco, D ratio
2 3 5.003E-2 2.975E-4
4 5 1.331E-2 3.76 2.231E-5 13.34
8 9 3.435E-3 3.87 1.474E-6 15.14
16 17 8.719E-4 3.94 9.375E-8 15.72
32 33 2.196E-4 3.97 5.858E-9 16.00
Table 2.  zo(t) = €, q=4;
N n {20 — Tnlloo, D ratio llzo — &} |[co, D ratio
2 3 2.923E-2 7.088E-5
4 5 8.191E-3 3.57 5.006E-6 14.16
8 9 2.094E-3 3.91 3.165E-7 15.82
16 17 5.301E-4 3.95 1.982E-8 15.97
32 33 1.334E-4 3.97 1.244E-9 15.93

Table 3.  zo(t) = exp(|t — 3), q=2;



438 Young-Hee Kim and Man-Suk Song

N n lzo — Tnllco, D ratio llzo — 2}, |leo, D ratio
2 3 2.825E-2 7.509E-5
4 5 8.114E-3 3.48 4.629E-6 16.22
8 9 2.084E-3 3.89 3.018E-7 15.34
16 17 5.288E-4 3.94 1.908E-8 15.82

[

10.

11.

12.

13.

Table 4.  z¢(t) = exp(|t - %|), q=4;
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