ON THE WEAK LAW OF LARGE NUMBERS FOR ARRAYS OF PAIRWISE INDEPENDENT RANDOM VARIABLES

Dug Hun Hong, Seok Yoon Hwang and Joong Sung Kwon

Recently Hong and Oh [5] provided a fairly general weak law for arrays in the following form: Let $\{(X_{ni}, 1 \leq i \leq k_n), n \geq 1\}, k_n \rightarrow$ ∞ as $n \to \infty$, be an array of random variables on (Ω, \mathcal{F}, P) and set $\mathcal{F}_{nj} = \sigma\{X_{ni}, 1 \le i \le j\}, 1 \le j \le k_n, n \ge 1, \text{ and } \mathcal{F}_{n_0} = \{\phi, \Omega\}, n \ge 1.$ Suppose that $\frac{1}{k_n} \sum_{i=1}^{k_n} aP\{|X_{ni}|^p > a\} \to 0$ as $a \to \infty$ uniformly in nfor some $0 . Then <math>S_n/k_n^{1/p} \to 0$ in probability as $n \to \infty$ where $S_n = \sum_{i=1}^{k_n} (X_{ni} - E(X_{ni}I(|X_{ni}|^p \leq k_n)|\mathcal{F}_{n,i-1})).$ In this note, we will prove the following result under the same domi-

nation condition of Hong and Oh [5].

THEOREM. Let $\{(X_{ni}, 1 \leq i \leq k_n), n \geq 1\}, k_n \to \infty$ as $n \to \infty$, be an array of pairwise independent random variables and set $S_n =$ $\sum_{i=1}^{k_n} X_{ni}, n \geq 1$. Suppose that for some 0

(1)
$$\frac{1}{k_n} \sum_{i=1}^{k_n} aP\{|X_{ni}|^p > a\} \to 0 \quad \text{as} \quad a \to \infty \quad \text{uniformly in } n.$$

Then $(S_n - a_n)/k_n^{1/p} \rightarrow 0$ in probability as $n \rightarrow \infty$, where $a_n =$ $\sum_{i=1}^{k_n} E(X_{ni}I(|X_{ni}|^p \le k_n)), \ n \ge 1.$

REMARK. We have different centering from that in Hong and Oh [5] from which we cannot have this result directly.

Proof of Theorem. The proof follows closely from that of Hong and Oh [5]. Namely, set for $1 \le i \le k_n, n \ge 1, X'_{ni} = X_{ni}I\{|X_{ni}|^p \le k_n\}$ and $S'_n = \sum_{i=1}^{k_n} X'_{ni}$. Then, for each $n \ge 2$, $P\{|S_n/k_n^{1/p} - S'_n/k_n^{1/p}| > \varepsilon\}$

Received December 8, 1993.

 $\leq P\{S_n \neq S_n'\} = P\{\bigcup_{i=1}^{k_n} \{X_{ni} \neq X_{ni}'\}\} \leq \sum_{i=1}^{k_n} P\{|X_{ni}|^p > k_n\} = \frac{1}{k_n} \sum_{i=1}^{k_n} k_n P\{|X_{ni}|^p > k_n\}, \text{ so that (1) entails } S_n/k_n^{1/p} - S_n'/k_n^{1/p} \to 0 \text{ in probability. Thus to prove the theorem it suffices to verify that}$

(2)
$$\frac{S'_n - a_n}{k_n^{1/p}} \longrightarrow 0 \quad \text{in probability.}$$

Since $X'_{ni}-EX'_{ni}$, $1 \le i \le k_n$, are pairwise independent and $E(X'_{ni}-E(X'_{ni}))^2 \le E(X'_{ni})^2$, we have

$$\begin{split} &E(S_{n}^{'} - \sum_{i=1}^{k_{n}} E(X_{ni}^{'}))^{2} \leq \sum_{i=1}^{k_{n}} E(X_{ni}^{'})^{2} \\ &= \sum_{i=1}^{k_{n}} \sum_{j=1}^{k_{n}} \int_{\{j-1 < |X_{ni}|^{p} \leq j\}} X_{ni}^{2} dP \\ &\leq \sum_{i=1}^{k_{n}} \sum_{j=1}^{k_{n}} j^{2/p} (P\{|X_{ni}|^{p} > j-1\} - P\{|X_{ni}|^{p} > j\}) \\ &= \sum_{i=1}^{k_{n}} [P\{|X_{ni}|^{p} > 0\} - k_{n}^{2/p} P\{|X_{ni}|^{p} > k_{n}\} \\ &+ \sum_{j=1}^{k_{n}-1} ((j+1)^{2/p} - j^{2/p}) P\{|X_{ni}|^{p} > j\}] \\ &\leq k_{n} + \sum_{j=1}^{k_{n}} ((j+1)^{2/p} - j^{2/p}) \sum_{i=1}^{k_{n}} P\{|X_{ni}|^{p} > j\} \\ &\leq k_{n} (1 + c \sum_{j=1}^{k_{n}} ((j+1)^{2/p-1} - j^{2/p-1}) k_{n}^{-1} \sum_{i=1}^{k_{n}} j P\{|X_{ni}|^{p} > j\}) \\ &\leq k_{n} (1 + c \sum_{j=1}^{k_{n}} ((j+1)^{2/p-1} - j^{2/p-1}) \sup_{n} \{k_{n}^{-1} \sum_{i=1}^{k_{n}} j P\{|X_{ni}|^{p} > j\}\}), \end{split}$$

where c is an unimportant positive constant and the second equality comes from Lemma 5.1.1(4) of Chow and Teicher [2]. By the hypothesis (1), $\sup_{n} \{k_n^{-1} \sum_{i=1}^{k_n} jP\{|X_{ni}|^p > j\}\}$ goes to zero as $j \to \infty$ and

 $\sum_{j=1}^{k_n} ((j+1)^{\frac{2}{p}-1} - j^{\frac{2}{p}-1}) = (k_n+1)^{\frac{2}{p}-1} - 1.$ Thus, by Toeplitz lemma [1],

$$E(S'_{n} - \sum_{i=1}^{n} E(X'_{ni}))^{2} = o(k_{n}^{2/p}),$$

which implies (2) and hence completes the proof.

COROLLARY ([3, Ex.5.2.12]). Let $0 and suppose that <math>\{X_n\}$ are pairwise independent, identically distributed random variables obeying $nP\{|X_1|^p > n\} = o(1)$. Then

$$\frac{S_n - nEX_1I(|X_1|^p \le n)}{n^{1/p}} \to 0 \quad \text{in probability.}$$

References

- 1. R. B. Ash, Real Analysis and Probability, Academic Press, New-York, 1972.
- Y. S. Chow and H. Teicher, Probability Theory, 2nd ed., Springer, New-York, 1988.
- K. L. Chung, A course in probability theory, 2nd ed., Academic Press, New-York, London, 1974.
- 4. A. Gut, The weak law of large numbers for arrays, Statist. Probab. Lett. 14 (1991), 49-52.
- 5. D. H. Hong and K. S. Oh, On the weak law of large numbers for arrays, Statist. Probab. Lett. (to appear).

Department of Statistics Hyosung Women's University Kyungbuk 713-702 Korea

Department of Mathematics Taegu University Kyungbuk 713-714 Korea

Department of Mathematics Sung Hwa University Chun-an, 330-600 Korea