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EQUIVARIANT VECTOR BUNDLES OVER S§!

SuNG SooK KM

§1. Introduction

Let G be a compact Lie group and let S denote the unit circle in
R? with the standard metric. Since every smooth compact Lie group
action on S! is smoothly equivalent to a linear action (cf. [3] TH 2.0),
we may think of S! with a smooth G-action as S(V) the unit circle of
a real 2-dimensional orthogonal G-module V. In this paper we consider
smooth G-vector bundles over S(V). We say that a smooth G-vector
bundle over S(V') is trivial if it is isomorphic to a product bundle S(V') x
F — S(V) for some real G-module F. Since the trivial bundles are
well understood, we will consider a non-trivial smooth G-vector bundle
over S(V') in the following. In this case it turns out there is a real 2-
dimensional orthogonal G-module U such that S(U)/Z2 = S(V) where
Z; = {1} and it acts on S(U) as scalar multiplication (see §2). In [2],
we proved

PROPOSITION. A non-trivial smooth G-line bundle over S(V) is iso-
morphic to S(U) xz, 6 — S(U)/Z; = S(V), where § is a real 1-
dimensional G X Zq-module and the Zgs-action on it is non-trivial.

We obtain a similar result for a higher dimensional smooth G-vector
bundle over S(V') when the G-action on S(V) is effective, in other words,
when V is a faithful representation.

THEOREM A. A smooth non-trivial G-vector bundle over S(V) is
isomorphic to S(U) xz, W — S(U)/Z, = S(V) if the G-action on S(V)
is effective, where W is the direct sum of real 1-dimensional G X Z,-
modules and the Zy-action on W is non-trivial.

Theorem A follows immediately from the proposition above and the
following theorem.
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THEOREM B. A smooth G-vector bundle over S(V') is isomorphic to
the Whitney sum of smooth G-line bundles if the G-action on S(V) is
effective.

Theorem B is not true if we drop the effectiveness assumption. For
instance, take a compact Lie group G with an irreducible G-module
W of dimension greater than 1. Then the product G-vector bundle
S! x W — S?, where the G-action on S?! is trivial, does not have a
proper smooth G-subbundle, in particular it is not isomorphic to the
Whitney sum of smooth G-line bundles.

Acknowledgments. I would like to thank Mikiya Masuda for his
encouragement and helpful conversations.

§2. Equivariant line bundles over S*

In this section we give the proof of the proposition in the introduction
for the convenience of the reader.

Let L — S(V) be a non-trivial smooth G-line bundle. Since G is
compact, L admits a G invariant fiber metric. We choose one and fix it.

Suppose that the bundle is trivial when we forget the action. Then
we can identify L with $! x R and may assume that the G-action on
S! x R preserves the standard fiber metric on $* x R. Hence one can
express the action of ¢ € G on S! x R as

(2,0) = ((g)(x), pyla)v)  for (z,v) € S* xR

where p : G — O(2) is the homomorphism associated with V and ¢,(z)
is a scalar. Since the action of g preserves the standard metric on S xR,
¢g(z) must be 1. The map ¢4 : S' — {£1} = Z, is continuous and
S* is connected, so ¢4(z) is independent of ¢ € S. Hence we have a
homomorphism ¢ : G — Z9 given by ¢ — ¢,. This shows that the
G-line bundle L — S(V) is trivial.

Thus we may assume that our G-line bundle L — S(V') remains non-
trivial after we forget the action. Then the total space of its sphere
bundle, denoted L', is diffeomorphic to S* and the projection 7 : L' —
S(V) is an equivariant double covering map. Since any smooth G-action
on S! is smoothly equivalent to a linear action as mentioned in the
introduction, we may assume L' = S(U) for some real 2-dimensional
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orthogonal G-module U. The G-line bundle induced by 7 from L —
S(V) is trivial when we forget the action, so the above argument shows
that the induced bundle is isomorphic to a product bundle S(U) x § —
S(U) for some real 1-dimensional G-module é. Therefore our G-line
bundle L — S(V) is isomorphic to S(U) xz, 6 — S(U) where Z; acts

on ¢ as scalar multiplication. This proves the proposition.

§3. Proof of Theorem B

Since the G-action on the base space S(V) is assumed to be effective,
we may think of G as a subgroup of O(2). Consider a normal subgroup
N = G N SO(2) of G, which is SO(2) or a finite cyclic group. Since
the restricted N-action on S(V) is free, taking quotient by the N-action
gives a bijective correspondence between G-vector bundles over S(V)
and G/N-vector bundles over S(V)/N (cf. [1] TH 1.6.1). Its inverse is
given by taking pullback bundles via the quotient map S(V) — S(V)/N.
Therefore it suffices to prove that

(%) any smooth G/N -vector bundle over S(V)/N i3 isomorphic to the
Whitney sum of smooth G/N -line bundles.

If N =50(2) (i.e., G = O(2) or SO(2)), then S(V)/N is a point, so
(*) is obvious in this case. Therefore we may assume that N is finite
cyclic in the following. Then S(V')/N is again a circle.

Case 1. Suppose G is a subgroup of SO(2). Then G = N, in other
words, G/N is trivial. Since any (non-equivariant) smooth vector bundle
over S is isomorphic to the Whitney sum of smooth line bundles as is
well known, () follows.

Case 2. Suppose G is not a subgroup of SO(2). Then G is a dihedral
group, G/N 2 Z, and the induced G/N-action on S(V')/N is reflection;
so (*) reduces to the following lemma.

LEMMA. Suppose Zy acts on S* by reflection. Then any smooth Z;-
vector bundle E over S! is isomorphic to the Whitney sum of smooth
Z,-line bundles.

Proof. Let {29,2;} be the fixed set of the Z,-action on S1. Choose
an eigenvector v; of E at z; and connect vy and v; by a smooth path to
get a non-zero cross section of E on the upper half circle. Extend it to
a cross section of E on S' by using the Zj-action. The resulting cross
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section on S! may not be continuous, but the lines generated by it form
a smooth Z,-line subbundle L of E. So we can decompose E = E' @ L
where E' is a smooth Z,-vector bundle. Apply the same argument to E’
and so on. Then the lemma follows.
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