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RIEMANNIAN FOLIATIONS AND F-JACOBI FIELDS

HoBuMm KiMm

In this report, given a Riemannian foliation  on a Riemannian man-
ifold, we introduce the concept of F-Jacobi fields along normal geodesics
to investigate geometric properties of the leaves of F.

1. Introduction

Given a Riemannian manifold (M, gar), a Riemannian foliation F on
M with bundle-like metric g, is a foliation whose leaves are locally given
as fibers of Riemannian submersions. Such a foliation F is characterized
by the property that geodesics in (M, gpr) orthogonal to a leaf of F at
one point are orthogonal to the leaves of F everywhere.

In this report, we introduce the concept of F-Jacobi fields along
geodesics orthogonal to the leaves of F which is expected to play a
useful role in the study of geometric properties of the leaves of F in a
similar way that Jacobi fields along geodesics in Riemannian manifolds
play a crucial role in Riemannian geometry.

As applications, for a Riemannian foliation F we characterize the
harmonicity and total geodesity in terms related with F-Jacobi fields,
and get an upper bound for the order of a focal point of an arbitrary

leaf.

2. F-Jacobi fields and F-Jacobi tensors

Let F be a foliation on a Riemannian manifold (M, gsr). We denote
the tangent bundle of M by TM, and the tangent and normal bundle of
F by L and L, respectively. Form € M, let L,, and L be the fibers of
L and L* through m, respectively. Let 7 : TM — Lt andnt : TM — L
be the canonical projections. The second fundamental form of F is
denoted by a. For z € L, the Weingarten map W(z2) : L, — Ly, with
respect to z is given by gpi(a(z,y),z) = gL(W(2)z,y) for z,y € L,,,
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where g7 and g1 are the canonical metrics on L and Lt induced from
g, respectively. The O’neill integrability tensor is a tensor A of type
(1,2) given by

AxY = ot (g¥irY) + n(9¥nlY)

for X,Y € IT'TM, where M is the Levi-Civita connection associated
with gpr and I'T M is the space of smooth sectionsof TM. Lety: I — M
be a unit speed geodesic orthogonal to a leaf of F, where I is an open
interval containing 0. The pullback bundle by 7 of the bundle Q)] L
of tensors of type (r,s) over L will be denoted by v* @, L. A tensor
field over L along « of type (r,s) is a smooth section of v* @’ L. In
particular, a smooth section of v ®0 L = L is called a vector field over
L along v. The connection 7% on L defined by v4X = n+(y¥ X) for
X € 'L and Y € I'TM, where I'L is the space of smooth sections of
L, is metric with respect to gr.. Let X be a vector field over L along ~.
Then vL X, where 4 = 'y and X is an extension of X to a section of L
on a nelghborhood of '7(t), is called the covariant derivative of X along

~ with respect to 7% and is denoted by ydTLX . For a tensor field B over

L along « of type (r,s), the covariant derivative Yd;—B of B along = is
given by

d
( B)(w, ol Xay, Xa) = 2Bl w7 X, X

—ET:B(w1 V—Lwi w, X X,)
. U ey y<rlye e 9 g

S vL
-Y B@!,..., v, Xy, , LXK
; dt
for smooth sections w!,... ,w” of v* ®‘1) L and X3,...,X, of 'y*L We

say that a tensor field B over L along v is yy¥-parallel along v if ¥ B =
0. Now, we are in a position to define F-Jacobi fields and F- Jacobl
tensors.
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DEFINITION 2.1. A vector field Y over L along v is called an F-Jacob:
field if it satisfies the ordinary differential equation of second order:

M, 2
(2.2) t [(-VdT) Y + RM (Y,m] =0,
or equivalently,
L, 9 3
(2.3) (%—) Y + By(Y) + (45)2Y =0,

where Ry is the endomorphism on L., defined by R;(Y) = 1t RM(Y,7)¥
and A is the integrability tensor.
DEFINITION 2.4. A tensor field D over L along -y of type (1,1) is

called an F-Jacobs tensor if D(t)V(t) is an F-Jacobi field along v for
any vy’-parallel vector field V over L along 7.

REMARK 2.5. D is an F-Jacobi tensor if and only if it satisfies the
equation:

(2.6) (%L)QD@) + R, D(t) + (45)*D(t) = 0.

LEMMA 2.7. The Weingarten map W () satisfies the equation of Ric-
cati type:

L
(2.8) VoW(3) = W + Ry +(45)°

For the proof, we refer to [3].

THEOREM 2.9. Let J be a tensor field of type (1,1) over L along ~
satisfying %:-J = —W(¥)J (2.10). Then J is an F-Jacobi tensor.

Proof. Let {E;(t):i=1,...,p} be a yl- parallel orthonormal frame
field of v*L, and let By and Bw be the matrices of J and W (4) with
respect to {E;:i=1,...,p} , respectively. Then the equation (2.10) is
equivalent to the matrix differential equation %B J = —BwBjy (2.11).
It follows that the solutions of (2.10) exist, are invertible and satisfy
W(¥) = —(9-J)J ! (2.12). Substituting (2.12) into (2.8), we find that
J satisfies the equation (2.6).
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3. Harmonicity and total geodesity

In this section, we characterize the harmonicity and total geodesity
in terms of F-Jacobi fields and F-Jacobi tensors. A foliation F is totally
geodesic if each of its leaves is a totally geodesic submanifold. F is
harmonic if each of its leaves is a minimal submanifold. Hence F is
totally geodesic if W(z) vanishes for each z € Lt | and F is harmonic if
trace W(z) = 0 for each z € L.

LEMMA 3.1. The following are equivalent:
(1) Any 7L -parallel vector field over L along v is an F-Jacobi field.
(2) The Weingarten map W (%) satisfies
vt 2
(3.2) S W) =W(H)"
Proof. (1) = (2): By hypothesis, the identity tensor field I(¢) over L
along -y is an F-Jacobi tensor. Therefore, we have

vL 2 ») 2 3 2
('E) I(t) + R"Y + (A:y) = R:y + (A"Y =0.

Thus (3.2) follows from (2.8). The converse is obvious.

LEMMA 3.3. (1) If F is totally geodesic, then every \y*-parallel vector
field over L along v is an F-Jacobi field.

(2) Conversely, suppose that every maximal geodesic v orthogonal to
the leaves of F has at least one point where the Weingarten map W (%)
vanishes and that every \yL-parallel vector field over L along ~ is an
F-Jacobi field. Then F is totally geodesic.

Proof. (1) is clear. To prove (2), we note that W (4) satisfies the equa-

tion Vd—tLW(ﬁr) = W(¥)* and vanishes for some ¢. Hence W(%) vanishes
identically along «.

THEOREM 3.4. Let F be a Riemannian foliation on a complete Rie-
mannian manifold M with bundle-like metric gps. Then F is totally
geodesic if and only if any yl-parallel vector field over L along any
geodesic orthogonal to the leaves of F is an F-Jacobi field.

Proof. Sufficiency is clear. To prove the necessity, choose a tL-
parallel orthonormal frame {Ej, ..., E,} of L along a maximal geodesic
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v orthogonal to the leaves of . Since M is complete, v is defined on
the whole real line. Let [W;;(t)] be the matrix of W(¥) with respect
to the basis {E;(t),...,Ep(t)}. It suffices to show that W;;(0) = 0
for all 4,5 = 1,... ,p. We may assume that [W;;(0)] is a diagonal ma-
trix. Suppose W;;(0) > 0 for some 1 < ¢ < p. From (3.2), we have
%Wii = (W;)? + Ek# WZ,. Since Zk# W2 > 0, W;;(t) increases not
slower than the solution of the equation dtQ @2, with the initial con-
dition Q(0) = W;;(0) (3.4). But the solution of the initial value problem
(3.4) is given by Q(¢) = —KV#(—O)(— which blows up at ¢t = T Hence
Wii(t) should also blow up at some 0 < ¢ < oo, contradicting the fact
that [W;;] is a global solution. In the case W;;(0) < 0, taking the reverse
geodesic, we also get a contradiction by the same way as above.

Harmonic foliation can be characterized in terms of F-Jacobi as fol-
lows.

THEOREM 3.5. F is harmonic if and only if & (detJ) vanishes iden-
tically along any geodesic orthogonal to the leaves of F.

Proof. Tt suffices to show that Trace W(¥) = —(&detJ)/detJ. Let
{E1,...,E,} be ayX-parallel frame field of L along 7, and let Y JE;.

Then we have (detJ)E1 A---AEp, =Y1 A--- AY,. Taking ¥ on both
sides of the above equation, we get

d P \VAx
(3.6) (E;detJ)El/\--~/\Ep=Z:Y1/\---/\g£—Y,-/\---/\YP.

Since %J = —W(q'/)J we have

L
Y4
My =
dt
It follows that

——(JE)—( J)E— -W($)JE; = ~W(%)Y..

P ol
Zy’l/\.../\a_yi/\.../\y;

—_—i}ﬁ/\---/\(—W(ﬁ«)lﬁ)/\---/\Yp

= — (detJ)(TraceW (7))EyL A -+ A E,.
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The above together with (3.6) completes the proof.

4. Focal points

In this section, we get an upper bound for the order of a focal point
of a leaf of a Riemannian foliation. Let S be a submanifold of a Rie-
mannian manifold M and N(S) its normal bundle. The restriction of
the exponential map of M on N(S) gives the map exp : N(S) — M. For
x € S, let N(S)(z) be the fiber of N(S) over z. v € N(S)(z) is called a
focal point of S if d exp is singular at v. If p is a ray from 0 to v, then
exp v is called a focal point of S along expo p. The order of a focal
point is the dimension of the linear space annihilated by d exp. Let v be
a geodesic segment orthogonal to S at 4(0). A Jacobi field Y along 7 is
called an S-Jacob: field if Y is perpendicular to v, Y(0) € TS and
W(4(0))Y(0) + V%})Y is perpendicular to T )S. It is well-known that
S-Jacobi fields form a linear space of dimension n—1, where n = dim M.
It is shown in 11.2 and 11.3 of [2] that v(b) is a focal point of order r of
S along « if and only if there are r-linearly independent S-Jacobi fields
which vanish at b.

Now, we restrict our attention to the leaves of a Riemannian foliation
F on a Riemannian manifold M with bundle-like metric gps. Form € M
let £,, denote the leaf of F through m, and let v be a geodesic orthogonal
to the leaves of F defined on an open interval containing 0.

LEMMA 4.1. Suppose the orthogonal complement of F is involutive.
Then,

(1) for any L. ()-Jacobi field Y1,Y = 7+Y; is an F-Jacobi field sat-
isfying the initial condition (%L—Y)(O) = —-W(5(0))Y(0).
(2) Conversely, if Y is an F-Jacobi field given by Y = JE, where J

is a solution of %L-J = —~W(4%)J and E is any \7*-parallel vector
field over L along v, then Y is an L.(g)-Jacobi field.

Proof. Since F is Riemannian and F* involutive, it follows that F+
is totally geodesic. Thus for any U € I'L and Z;,2, € 'L+, we have
v%U € I'L and \7% Zy € TL*. Moreover, R(u,v)w € Ly, for u € L,
and v,w € LE, m € M. Decomposing Y; as Y¥; = 71Y; + 7Y}, we easily
see that Y = n1Y; satisfies the equation for F-Jacobi fields. Moreover,
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from the condition that W(¥(0))Y;(0) + V%Q)YI is perpendicular to

L0y, we have W(¥(0))Y'(0) + (%L—Y)(O) = 0. This completes the proof
of (1). To prove (2), we note that Y satisfies the equation for Jacobi
fields. Moreover, we have Y = YV = (¥2J)E = ~W(5)JE =
—W(4)Y. Hence, we have. W(¥(0))Y(0) + V%))Y = 0 and the proof of
(2) is complete.

THEOREM 4.2. Let ¥(to) be a focal point of L.y along vy. If F* is
involutive, then order of y(tg) < ¢ —1.

Proof. By (2) of Lemma 4.1, there are at least p linearly independent
nowhere vanishing £.(g)-Jacobi fields along . But the dimension of the
space of all £, g)-Jacobi fields is n — 1. Hence it follows that order of
¥(to) along y<n—-1—-p=g¢g—1.

COROLLARY 4.3. If ¥ is a Riemannian foliation of codimension one,
then no leaf of F has focal points.
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