RIEMANNIAN FOLIATIONS AND \mathcal{F} -JACOBI FIELDS

Новим Кім

In this report, given a Riemannian foliation \mathcal{F} on a Riemannian manifold, we introduce the concept of \mathcal{F} -Jacobi fields along normal geodesics to investigate geometric properties of the leaves of \mathcal{F} .

1. Introduction

Given a Riemannian manifold (M, g_M) , a Riemannian foliation \mathcal{F} on M with bundle-like metric g_M is a foliation whose leaves are locally given as fibers of Riemannian submersions. Such a foliation \mathcal{F} is characterized by the property that geodesics in (M, g_M) orthogonal to a leaf of \mathcal{F} at one point are orthogonal to the leaves of \mathcal{F} everywhere.

In this report, we introduce the concept of \mathcal{F} -Jacobi fields along geodesics orthogonal to the leaves of \mathcal{F} which is expected to play a useful role in the study of geometric properties of the leaves of \mathcal{F} in a similar way that Jacobi fields along geodesics in Riemannian manifolds play a crucial role in Riemannian geometry.

As applications, for a Riemannian foliation \mathcal{F} we characterize the harmonicity and total geodesity in terms related with \mathcal{F} -Jacobi fields, and get an upper bound for the order of a focal point of an arbitrary leaf.

2. \mathcal{F} -Jacobi fields and \mathcal{F} -Jacobi tensors

Let \mathcal{F} be a foliation on a Riemannian manifold (M, g_M) . We denote the tangent bundle of M by TM, and the tangent and normal bundle of \mathcal{F} by L and L^{\perp} , respectively. For $m \in M$, let L_m and L^{\perp}_m be the fibers of L and L^{\perp} through m, respectively. Let $\pi: TM \to L^{\perp}$ and $\pi^{\perp}: TM \to L$ be the canonical projections. The second fundamental form of \mathcal{F} is denoted by α . For $z \in L^{\perp}_m$, the Weingarten map $W(z): L_m \to L_m$ with respect to z is given by $g_{L^{\perp}}(\alpha(x,y),z) = g_L(W(z)x,y)$ for $x,y \in L_m$,

Received October 11, 1993.

This work was supported by KOSEF Grant 923-0100-006-1.

where g_L and $g_{L^{\perp}}$ are the canonical metrics on L and L^{\perp} induced from g, respectively. The O'neill integrability tensor is a tensor A of type (1,2) given by

$$A_X Y = \pi^{\perp}(\nabla_{\pi X}^M \pi Y) + \pi(\nabla_{\pi X}^M \pi^{\perp} Y)$$

for $X,Y\in\Gamma TM$, where ∇^M is the Levi-Civita connection associated with g_M and ΓTM is the space of smooth sections of TM. Let $\gamma:I\to M$ be a unit speed geodesic orthogonal to a leaf of \mathcal{F} , where I is an open interval containing 0. The pullback bundle by γ of the bundle $\bigotimes_s^r L$ of tensors of type (r,s) over L will be denoted by $\gamma^*\bigotimes_s^r L$. A tensor field over L along γ of type (r,s) is a smooth section of $\gamma^*\bigotimes_s^r L$. In particular, a smooth section of $\gamma^*\bigotimes_0^1 L=L$ is called a vector field over L along γ . The connection ∇^L on L defined by $\nabla^L_Y X=\pi^L(\nabla^M_Y X)$ for $X\in\Gamma L$ and $Y\in\Gamma TM$, where ΓL is the space of smooth sections of L, is metric with respect to g_L . Let X be a vector field over L along γ . Then $\nabla^L_\gamma X$, where $\dot{\gamma}=\frac{d}{dt}\gamma$ and \ddot{X} is an extension of X to a section of L on a neighborhood of $\gamma(t)$, is called the covariant derivative of X along γ with respect to ∇^L and is denoted by $\frac{\nabla^L}{dt} X$. For a tensor field B over L along γ of type (r,s), the covariant derivative $\frac{\nabla^L}{dt} B$ of B along γ is given by

$$(\frac{\nabla^{L}}{dt}B)(w^{1},\ldots,w^{r},X_{1},\ldots,X_{s}) = \frac{d}{dt}B(w^{1},\ldots,w^{r},X_{1},\ldots,X_{s})$$
$$-\sum_{i=1}^{r}B(w^{1},\ldots,\frac{\nabla^{L}}{dt}w^{i},\ldots,w^{r},X_{1},\ldots,X_{s})$$
$$-\sum_{j=1}^{s}B(w^{1},\ldots,w^{r},X_{1},\ldots,\frac{\nabla^{L}}{dt}X_{j},\ldots,X_{s})$$

for smooth sections w^1, \ldots, w^r of $\gamma^* \bigotimes_1^0 L$ and X_1, \ldots, X_s of $\gamma^* L$. We say that a tensor field B over L along γ is ∇^L -parallel along γ if $\frac{\nabla^L}{dt}B = 0$. Now, we are in a position to define \mathcal{F} -Jacobi fields and \mathcal{F} -Jacobi tensors.

DEFINITION 2.1. A vector field Y over L along γ is called an \mathcal{F} -Jacobi field if it satisfies the ordinary differential equation of second order:

(2.2)
$$\pi^{\perp} \left[\left(\frac{\nabla^{M}}{dt} \right)^{2} Y + R^{M}(Y, \dot{\gamma}) \dot{\gamma} \right] = 0,$$

or equivalently,

(2.3)
$$\left(\frac{\nabla^L}{dt}\right)^2 Y + \bar{R}_{\dot{\gamma}}(Y) + (A_{\dot{\gamma}})^2 Y = 0,$$

where $\bar{R}_{\dot{\gamma}}$ is the endomorphism on L_{γ} defined by $\bar{R}_{\dot{\gamma}}(Y) = \pi^{\perp} R^{M}(Y, \dot{\gamma}) \dot{\gamma}$ and A is the integrability tensor.

DEFINITION 2.4. A tensor field D over L along γ of type (1,1) is called an \mathcal{F} -Jacobi tensor if D(t)V(t) is an \mathcal{F} -Jacobi field along γ for any ∇^L -parallel vector field V over L along γ .

REMARK 2.5. D is an \mathcal{F} -Jacobi tensor if and only if it satisfies the equation:

(2.6)
$$\left(\frac{\nabla^L}{dt}\right)^2 D(t) + \bar{R}_{\dot{\gamma}} D(t) + (A_{\dot{\gamma}})^2 D(t) = 0.$$

LEMMA 2.7. The Weingarten map $W(\dot{\gamma})$ satisfies the equation of Riccati type:

(2.8)
$$\frac{\nabla^L}{dt}W(\dot{\gamma}) = W(\dot{\gamma})^2 + \bar{R}_{\dot{\gamma}} + (A_{\dot{\gamma}})^2$$

For the proof, we refer to [5].

Theorem 2.9. Let J be a tensor field of type (1,1) over L along γ satisfying $\frac{\nabla^L}{dt}J = -W(\dot{\gamma})J$ (2.10). Then J is an \mathcal{F} -Jacobi tensor.

Proof. Let $\{E_i(t): i=1,\ldots,p\}$ be a ∇^L - parallel orthonormal frame field of γ^*L , and let B_J and B_W be the matrices of J and $W(\dot{\gamma})$ with respect to $\{E_i: i=1,\ldots,p\}$, respectively. Then the equation (2.10) is equivalent to the matrix differential equation $\frac{d}{dt}B_J=-B_WB_J$ (2.11). It follows that the solutions of (2.10) exist, are invertible and satisfy $W(\dot{\gamma})=-(\frac{\nabla^L}{dt}J)J^{-1}$ (2.12). Substituting (2.12) into (2.8), we find that J satisfies the equation (2.6).

3. Harmonicity and total geodesity

In this section, we characterize the harmonicity and total geodesity in terms of \mathcal{F} -Jacobi fields and \mathcal{F} -Jacobi tensors. A foliation \mathcal{F} is totally geodesic if each of its leaves is a totally geodesic submanifold. \mathcal{F} is harmonic if each of its leaves is a minimal submanifold. Hence \mathcal{F} is totally geodesic if W(z) vanishes for each $z \in L^{\perp}$, and \mathcal{F} is harmonic if trace W(z) = 0 for each $z \in L^{\perp}$.

LEMMA 3.1. The following are equivalent:

- (1) Any ∇^L -parallel vector field over L along γ is an \mathcal{F} -Jacobi field.
- (2) The Weingarten map $W(\dot{\gamma})$ satisfies

(3.2)
$$\frac{\nabla^L}{dt}W(\dot{\gamma}) = W(\dot{\gamma})^2.$$

Proof. (1) \Rightarrow (2): By hypothesis, the identity tensor field I(t) over L along γ is an \mathcal{F} -Jacobi tensor. Therefore, we have

$$\left(\frac{\nabla^L}{dt}\right)^2 I(t) + \bar{R}_{\dot{\gamma}} + (A_{\dot{\gamma}})^2 = \bar{R}_{\dot{\gamma}} + (A_{\dot{\gamma}})^2 = 0.$$

Thus (3.2) follows from (2.8). The converse is obvious.

LEMMA 3.3. (1) If \mathcal{F} is totally geodesic, then every ∇^L -parallel vector field over L along γ is an \mathcal{F} -Jacobi field.

(2) Conversely, suppose that every maximal geodesic γ orthogonal to the leaves of \mathcal{F} has at least one point where the Weingarten map $W(\dot{\gamma})$ vanishes and that every ∇^L -parallel vector field over L along γ is an \mathcal{F} -Jacobi field. Then \mathcal{F} is totally geodesic.

Proof. (1) is clear. To prove (2), we note that $W(\dot{\gamma})$ satisfies the equation $\frac{\nabla^L}{dt}W(\dot{\gamma})=W(\dot{\gamma})^2$ and vanishes for some t. Hence $W(\dot{\gamma})$ vanishes identically along γ .

THEOREM 3.4. Let \mathcal{F} be a Riemannian foliation on a complete Riemannian manifold M with bundle-like metric g_M . Then \mathcal{F} is totally geodesic if and only if any ∇^L -parallel vector field over L along any geodesic orthogonal to the leaves of \mathcal{F} is an \mathcal{F} -Jacobi field.

Proof. Sufficiency is clear. To prove the necessity, choose a ∇^{L} -parallel orthonormal frame $\{E_1, \ldots, E_p\}$ of L along a maximal geodesic

 γ orthogonal to the leaves of \mathcal{F} . Since M is complete, γ is defined on the whole real line. Let $[W_{ij}(t)]$ be the matrix of $W(\dot{\gamma})$ with respect to the basis $\{E_1(t),\ldots,E_p(t)\}$. It suffices to show that $W_{ij}(0)=0$ for all $i,j=1,\ldots,p$. We may assume that $[W_{ij}(0)]$ is a diagonal matrix. Suppose $W_{ii}(0)>0$ for some $1\leq i\leq p$. From (3.2), we have $\frac{d}{dt}W_{ii}=(W_{ii})^2+\sum_{k\neq i}W_{kk}^2$. Since $\sum_{k\neq i}W_{kk}^2\geq 0$, $W_{ii}(t)$ increases not slower than the solution of the equation $\frac{d}{dt}Q=Q^2$, with the initial condition $Q(0)=W_{ii}(0)$ (3.4). But the solution of the initial value problem (3.4) is given by $Q(t)=\frac{W_{ii}(0)}{1-tW_{ii}(0)}$ which blows up at $t=\frac{1}{W_{ii}(0)}$. Hence $W_{ii}(t)$ should also blow up at some $0\leq t<\infty$, contradicting the fact that $[W_{ij}]$ is a global solution. In the case $W_{ii}(0)<0$, taking the reverse geodesic, we also get a contradiction by the same way as above.

Harmonic foliation can be characterized in terms of \mathcal{F} -Jacobi as follows.

THEOREM 3.5. \mathcal{F} is harmonic if and only if $\frac{d}{dt}(det J)$ vanishes identically along any geodesic orthogonal to the leaves of \mathcal{F} .

Proof. It suffices to show that Trace $W(\dot{\gamma}) = -(\frac{d}{dt}detJ)/detJ$. Let $\{E_1, \ldots, E_p\}$ be a ∇^L -parallel frame field of L along γ , and let $Y_i = JE_i$. Then we have $(detJ)E_1 \wedge \cdots \wedge E_p = Y_1 \wedge \cdots \wedge Y_p$. Taking $\frac{\nabla^L}{dt}$ on both sides of the above equation, we get

$$(3.6) \qquad \left(\frac{d}{dt}det J\right) E_1 \wedge \cdots \wedge E_p = \sum_{i=1}^p Y_1 \wedge \cdots \wedge \frac{\nabla^L}{dt} Y_i \wedge \cdots \wedge Y_p.$$

Since $\frac{\nabla^L}{dt}J = -W(\dot{\gamma})J$, we have

$$\frac{\nabla^{L}}{dt}Y_{i} = \frac{\nabla^{L}}{dt}(JE_{i}) = (\frac{\nabla^{L}}{dt}J)E_{i} = -W(\dot{\gamma})JE_{i} = -W(\dot{\gamma})Y_{i}.$$

It follows that

$$\sum_{i=1}^{p} Y_{1} \wedge \cdots \wedge \frac{\nabla^{L}}{dt} Y_{i} \wedge \cdots \wedge Y_{p}$$

$$= \sum_{i=1}^{p} Y_{1} \wedge \cdots \wedge (-W(\dot{\gamma})Y_{i}) \wedge \cdots \wedge Y_{p}$$

$$= -(\det J)(TraceW(\dot{\gamma}))E_{1} \wedge \cdots \wedge E_{p}.$$

The above together with (3.6) completes the proof.

4. Focal points

In this section, we get an upper bound for the order of a focal point of a leaf of a Riemannian foliation. Let S be a submanifold of a Riemannian manifold M and N(S) its normal bundle. The restriction of the exponential map of M on N(S) gives the map $\exp: N(S) \to M$. For $x \in S$, let N(S)(x) be the fiber of N(S) over x. $v \in N(S)(x)$ is called a focal point of S if d exp is singular at v. If ρ is a ray from 0 to v, then exp v is called a focal point of S along $\exp \circ \rho$. The order of a focal point is the dimension of the linear space annihilated by d exp. Let γ be a geodesic segment orthogonal to S at $\gamma(0)$. A Jacobi field Y along γ is called an S-Jacobi field if Y is perpendicular to γ , $Y(0) \in T_{\gamma(0)}S$ and $W(\dot{\gamma}(0))Y(0) + \nabla^M_{\dot{\gamma}(0)}Y$ is perpendicular to $T_{\gamma(0)}S$. It is well-known that S-Jacobi fields form a linear space of dimension n-1, where $n=\dim M$. It is shown in 11.2 and 11.3 of [2] that $\gamma(b)$ is a focal point of order r of S along γ if and only if there are r-linearly independent S-Jacobi fields which vanish at b.

Now, we restrict our attention to the leaves of a Riemannian foliation \mathcal{F} on a Riemannian manifold M with bundle-like metric g_M . For $m \in M$ let \mathcal{L}_m denote the leaf of \mathcal{F} through m, and let γ be a geodesic orthogonal to the leaves of \mathcal{F} defined on an open interval containing 0.

LEMMA 4.1. Suppose the orthogonal complement of \mathcal{F} is involutive. Then,

- for any L_{γ(0)}-Jacobi field Y₁, Y = π[⊥]Y₁ is an F-Jacobi field satisfying the initial condition (^{∇L}/_{dt}Y)(0) = -W(γ(0))Y(0).
 Conversely, if Y is an F-Jacobi field given by Y = JE, where J
- (2) Conversely, if Y is an \mathcal{F} -Jacobi field given by Y = JE, where J is a solution of $\frac{\nabla^L}{dt}J = -W(\dot{\gamma})J$ and E is any ∇^L -parallel vector field over L along γ , then Y is an $\mathcal{L}_{\gamma(0)}$ -Jacobi field.

Proof. Since \mathcal{F} is Riemannian and F^{\perp} involutive, it follows that \mathcal{F}^{\perp} is totally geodesic. Thus for any $U \in \Gamma L$ and $Z_1, Z_2 \in \Gamma L^{\perp}$, we have $\nabla^M_{Z_1}U \in \Gamma L$ and $\nabla^M_{Z_1}Z_2 \in \Gamma L^{\perp}$. Moreover, $R(u,v)w \in L_m$ for $u \in L_m$ and $v, w \in L_m^{\perp}$, $m \in M$. Decomposing Y_1 as $Y_1 = \pi^{\perp}Y_1 + \pi Y_1$, we easily see that $Y = \pi^{\perp}Y_1$ satisfies the equation for \mathcal{F} -Jacobi fields. Moreover,

from the condition that $W(\dot{\gamma}(0))Y_1(0) + \nabla^M_{\dot{\gamma}(0)}Y_1$ is perpendicular to $L_{\gamma(0)}$, we have $W(\dot{\gamma}(0))Y(0) + (\frac{\nabla^L}{dt}Y)(0) = 0$. This completes the proof of (1). To prove (2), we note that Y satisfies the equation for Jacobi fields. Moreover, we have $\frac{\nabla^M}{dt}Y = \frac{\nabla^L}{dt}Y = (\frac{\nabla^L}{dt}J)E = -W(\dot{\gamma})JE = -W(\dot{\gamma})Y$. Hence, we have $W(\dot{\gamma}(0))Y(0) + \nabla^M_{\dot{\gamma}(0)}Y = 0$ and the proof of (2) is complete.

THEOREM 4.2. Let $\gamma(t_0)$ be a focal point of $\mathcal{L}_{\gamma(0)}$ along γ . If \mathcal{F}^{\perp} is involutive, then order of $\gamma(t_0) \leq q-1$.

Proof. By (2) of Lemma 4.1, there are at least p linearly independent nowhere vanishing $\mathcal{L}_{\gamma(0)}$ -Jacobi fields along γ . But the dimension of the space of all $\mathcal{L}_{\gamma(0)}$ -Jacobi fields is n-1. Hence it follows that order of $\gamma(t_0)$ along $\gamma \leq n-1-p=q-1$.

COROLLARY 4.3. If \mathcal{F} is a Riemannian foliation of codimension one, then no leaf of \mathcal{F} has focal points.

References

- 1. K. Abe, Application of a Riccati type differential equation to Riemannian manifolds with totally geodesic distributions, Tôhoku Math. J. 25 (1973), 425-444.
- 2. R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, New York, 1964.
- 3. J. Eschenburg and J. J. O'Sullivan, Growth of Jacobi Fields and Divergence of Geodesics, Math. Z. 150 (1976), 221-237.
- 4. F. W. Kamber and Ph. Tondeur, *Harmonic foliations*, Lecture Notes in Math., vol. 949, Springer, Berlin-New York, 1982, 87-121.
- 5. H. Kim and Ph. Tondeur, Riemannian foliations on manifolds with non-negative curvature, Manuscripta Math. 74 (1992), 39-45.
- B. O'neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
- Ph. Tondeur, Foliations on Riemannian manifolds, Universitext, Springer, New York, 1988.
- S. Yorozu, Behavior of geodesics in foliated manifolds with bundle-like metrics,
 J. Math. Soc. Japan 35 (1983), 251-272.

Department of Mathematics Yonsei University Seoul 120-749, Korea