EXTENSIONS OF t-MODULES

SUNG SIK WOO

1. Introduction

An elliptic module is an analogue of an elliptic curve over a function field [D]. The dual of an elliptic curve E is represented by $\operatorname{Ext}(E,\mathbb{G}_m)$ and the Cartier dual of an affine group scheme G is represented by $\operatorname{Hom}(G,\mathbb{G}_m)$. In the category of elliptic modules the Carlitz module C plays the role of \mathbb{G}_m . Taguchi [T] showed that a notion of duality of a finite t-module can be represented by $\operatorname{Hom}(G,C)$ in a suitable category. Our computation shows that the Ext-group as it stands is rather too "big" to represent a dual of an elliptic module.

2. Elliptic modules and t-modules

Throughout this paper we fix the following notations: p is a fixed prime, A is the polynomial ring $\mathbb{F}_p[t]$, K is a perfect field containing A and θ is the image of t in K. As usual $\mathbb{G}_{a,K}$ denotes the additive group scheme over K. It is well known that the ring of endomorphisms $\operatorname{End}_K(\mathbb{G}_a)$ is a noncommutative polynomial ring $K[\tau]$ with a commutation relation,

$$\tau x = x^p \tau$$
 for $x \in K$.

DEFINITION 1. An elliptic module or a Drinfeld module E of rank r is the additive group scheme \mathbb{G}_a together with an A-action

$$\psi:A o \operatorname{End}_K(\mathbb{G}_a)=K[au]$$

such that

(i) degree of ψ_a in τ is the same as $\deg(a)r$,

Received August 28, 1993.

This paper is supported by Research Fund from Korea Research Institute for Better Living (1989) and partially supported by KOSEF Research Grant 91-08-00-07.

(ii) the constant term of ψ_a is the same as the image of a in K.

If (E_1, ψ_1) and (E_2, ψ_2) are elliptic modules then a morphism from E_1 to E_2 is defined to be an endomorphism u of \mathbb{G}_a such that $u \circ \psi_1 = \psi_2 \circ u$.

Anderson [A] gave a definition of higher dimensional analogue of elliptic modules.

DEFINITION 2. An abelian t-module over K is the A-module valued functor E such that

- (i) as a group valued functor E is isomorphic to \mathbb{G}_a^n for some n,
- (ii) $(t \theta)^N \text{Lie}(E) = 0$ for some positive integer N,
- (iii) there is a finite dimensional subspace V of the group $\text{Hom}(E, \mathbb{G}_a)$ of the morphisms of K-algebraic groups such that

$$\operatorname{Hom}(E,\mathbb{G}_a) = \sum_{j=0}^{\infty} V \circ t^j.$$

A morphism between t-modules is simply a natural transformation of the functors.

Let $K[t, \tau]$ be the noncommutative ring generated by t and τ over K with the relations; $t\tau = \tau t$, xt = tx, $\tau x = x^p \tau$ for $x \in K$.

DEFINITION 3. A t-motive M is a left $K[t, \tau]$ -module with the following properties,

- (i) M is free of finite rank over K[t],
- (ii) $(t \theta)^N (N/\tau M) = 0$ for some positive integer N,
- (iii) M is finitely generated over $K[\tau]$.

A morphism between t-motives is simply a $K[t, \tau]$ -linear map.

Anderson [A] showed that the category of t-modules is anti-equivalent to the category of t-motives. To state his theorems let E be a t-module and let M(E) be the set of all morphisms $E \to \mathbb{G}_a$ of K-algebraic groups equipped with $K[t,\tau]$ -module structure,

$$\begin{cases} (xm)(e) = x(m(e)), \\ \tau(m)(e) = m(e)^p, \\ tm(e) = m(t(e)), \end{cases}$$

for $e \in E$.

THEOREM 1. The functor sending E to M(E) is an anti-equivalence of categories between t-modules and t-motives.

We recall another result of Anderson [A] for future use. Let E be a t-module. Let

$$H_*(E) = \text{ the kernel of exp } : \text{Lie}(E) \to E(K).$$

THEOREM 2. Let K be the algebraic closure of $\mathbb{F}_p((1/t))$. The following are equivalent:

- (i) $\operatorname{rank}_A(H_*(E)) = \operatorname{rank}(E)$.
- (ii) $\exp : \text{Lie}(E) \to E(K)$ is surjective.

A t-module E satisfying any one of the conditions will be said to be uniformizable.

3. Extensions of t-modules

In this section we make explicit computation of Ext groups and study their related properties.

PROPOSITION 1. Let M_1 and M_2 be t-motives. If

$$0 \rightarrow M_1 \rightarrow M \rightarrow M_2 \rightarrow 0$$

is an exact sequence of $K[t,\tau]$ -modules, then M is again a t-motive. In particular, if $0 \to E_1 \to E \to E_2 \to 0$ is an extension of t-modules, then E is isomorphic to \mathbb{G}_a^n for some n.

If E_1 and E_2 are uniformizable, then so is E.

Proof. For the first statement we need to check three conditions of Definition 3. First M is free of finite rank, since so are M_1 and M_2 . Second we need to check $(t-\theta)^N(M/\tau M)=0$ for some N. Let $(t-\theta)^r(M_1/\tau M_1)=0$, $(t-\theta)^s(M_2/\tau M_2)=0$. Since we have an exact sequence

$$M_1/\tau M_1 \rightarrow M/\tau M \rightarrow M_2/\tau M_2 \rightarrow 0$$
,

we see that $(t-\theta)^{r+s}(M/\tau M)=0$. The third condition is immediate.

For the last statement, consider the following commutative diagram;

Our assertion follows since exponential maps are surjective on $E_1(K)$ and $E_2(K)$.

PROPOSITION 2. Let E_1, E_2 be t-modules then, we have an isomorphism

$$Ext_{t-mod}(E_1, E_2) \cong Ext_{K[t,\tau]}(M(E_1), M(E_2)).$$

Proof. Immediate from Theorem 1 and Proposition 1.

THEOREM 3. Let E be an elliptic module of rank r and C be the Carlitz module. Then $\operatorname{Ext}^1(E,C)$ is isomorphic to K^r as an abelian group.

Proof. Write $R = K[t, \tau]$. To compute Ext-group we use a free resolution,

$$0 \to R \xrightarrow{d_1 = t - \psi_t^C} R \xrightarrow{\pi} M(C) \to 0$$

where $d_1(r) = r(t - \psi_t^C)$ and π sends t to ψ_t^C and τ to τ . Now apply $\operatorname{Hom}_R(-, M(E))$ to the above resolution,

$$\operatorname{Hom}_R(M(C), M(E)) \to \operatorname{Hom}_R(R, M(E)) \xrightarrow{d_1^*} \operatorname{Hom}_R(R, M(E)) \xrightarrow{d_2^*} 0.$$

Here we identify $\alpha \in \text{Hom}(R, M(E))$ with $\alpha(1) \in M(E) = K[\tau]$ and $d_1^*(\alpha) = \alpha \psi_t^E - \psi_t^C \alpha$. Hence $\text{Ext}^1(E, C)$ is isomorphic to $K[\tau]/\mathcal{B}$ where

$$\mathcal{B} = \{ \alpha \psi_t^E - \psi_t^C \alpha \mid \alpha \in K[\tau] \}.$$

Here we note that \mathcal{B} is not a K-submodule of $K[\tau]$.

To prove our assertion, we claim that for a given f there is a unique α such that the degree of $(f - (\alpha \psi_t^E - \psi_t^C \alpha))$ is less than r which is the rank of E. To prove this we use induction on the degree of f. If the

degree of f is less than r, then we can choose α to be 0. Now suppose that $\deg(f) = n+1$. Since we can write $f = b_{n+1}\tau^{n+1} + f_n$ where f_n is a polynomial in τ of degree less than or equal to n and since we are assuming our assertion for f_n , we only need to prove our assertion for $b_{n+1}\tau^{n+1}$. First assume (n+1) < 2r. Then by Euclidean algorithm [A] in $K[\tau]$ we see that there are unique α and γ' in $K[\tau]$ such that

$$b_{n+1}\tau^{n+1} = \alpha \psi_t^E + \gamma'$$
 and $\deg(\gamma') < r$,

where $\deg(\gamma') < r$ and $\deg(\alpha) < r$ since (n+1) < 2r. Therefore

$$b_{n+1}\tau^{n+1} = \alpha\psi_t^E - \psi_t^C\alpha + \gamma$$

where $\gamma = \gamma' + \psi_t^C \alpha$. Now proceed in the same way to get rid of our extra assumption that (n+1) < 2r.

Now the map

$$\operatorname{Ext}^{1}(E,C) = K[\tau]/\mathcal{B} \to K^{r}$$

sending f to the coefficients of $(f - (\alpha \psi_t^E - \psi_t^C \alpha))$ is obviously an isomorphism.

REMARK. The group $\operatorname{Ext}^1(E,C)$ is not a K-vector space.

PROPOSITION 3. The t-action on $\operatorname{Ext}^1(E,C)=K[\tau]/\mathcal{B}$ is given by right multiplication by ψ_t^E or which is the same as left multiplication by ψ_t^C .

Proof. Consider the commutative diagram

Apply the functor $\operatorname{Hom}_R(-,M(E))$ and carefully chase the diagram.

Let E be an elliptic module and C be the Carlitz module. Let

$$0 \to C \to \mathcal{E} \to E \to 0$$

be an extension of algebraic groups. Then by Proposition 1 we see that \mathcal{E} is isomorphic to \mathbb{G}_a^2 as an algebraic group. So the extension \mathcal{E} depends only on the t-module structure on \mathbb{G}_a^2 . Given f in $\operatorname{Ext}^1(E,C)=K[\tau]/\mathcal{B}$ we will describe the corresponding extension, namely the t-action on \mathbb{G}_a^2 .

THEOREM 4. Let $f \in Ext^1(E, C)$ and

$$0 \to M(E) \to M \to M(C) \to 0$$

be the corresponding extension of t-motives. Then $M \cong K[\tau] \oplus K[\tau]$ with t-action given by

$$\begin{bmatrix} \psi_t^E, & f \\ 0, & \psi_t^C \end{bmatrix}.$$

Proof. The extension \mathcal{E} corresponding to $f \in K[\tau]/\mathcal{B}$ is given by

$$0 \longrightarrow M(E) \longrightarrow M(E) \oplus R/\mathcal{R} \longrightarrow M(C) \longrightarrow 0$$

where $\mathcal{R} = \{(-rf, d_1(r)) | r \in R\}$. We define a map

$$\phi: M(E) \oplus R/\mathcal{R} \to K[\tau] \oplus K[\tau]$$

by sending (m,t) to $m+(\psi_t^C+f)$ and (m,τ) to $((m+\tau),\tau)$. For brevity we write $M=K[\tau]\oplus K[\tau]$. Now one checks that this is an isomorphism. The inverse of ϕ sends (a,b) to (a-b,b).

To get the t-action on M we transport the t-action on $M(E) \oplus R/\mathcal{R}$ via ϕ and send it back to M: To find t-action on (a,b) in M we lift it to (a-b,b) in $M(E) \oplus R/\mathcal{R}$. Hence in $M(E) \oplus R/\mathcal{R}$ we have,

$$t(a-b,b) = ((a-b)\psi_t^E, tb).$$

Now send this to M via ϕ to get the t-action on M

$$t(a,b) = ((a-b)\psi_t^E + b(\psi_t^C + f), b\psi_t^C).$$

Now our assertion follows since $(\psi_t^E - \psi_t^C) \in \mathcal{B}$.

Let ϕ be an isogeny of an elliptic module. Then the kernel of ϕ is a finite t-module in the sense of Taguchi [T]. By the standard results of homological algebra [S], we have an exact sequence,

$$0 \to \operatorname{Hom}(G,C) \xrightarrow{\delta} \operatorname{Ext}^1(E,C) \xrightarrow{\phi^{\star}} \operatorname{Ext}^1(E,C).$$

We have zero on the left because there is no morphisms between the elliptic modules of different rank. (We are assuming the rank of E is bigger than 1.) We want to compute the map δ .

THEOREM 4. $\delta(f)$ is given by $F \in K[\tau]/\mathcal{B}$ such that

$$F\phi = f\psi_t^E - \psi_t^C f.$$

Proof. Consider the following diagram,

Here $f^*M(E)$ is the fiber product $M(E)x_{M(G)}M(C)$. First lift f to M(E) which we still call f. Now chase the upper left square to get F which satisfies the property $F\phi = f\psi_t^E - \psi_t^C f$.

References

- [A] G. Anderson, t-motives, Duke Math. J. 53 (1986).
- [D] P. Deligne and D. Husemöller, Survey of Drinfeld modules, Contemp. Math. 67, (1987).
- [S] J. P. Serre, Algebraic groups and class fields, vol. 117, Graduate Texts in Math., Springer-Verlag, 1988.
- [T] Taguchi, A duality for finite t-modules, (a circulating note).

Department of Mathematics Ewha Women's University Seoul 120-750, Korea