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EXTENSIONS OF t-MODULES

SuNG Sik Woo

1. Introduction

An elliptic module is an analogue of an elliptic curve over a function
field [D]. The dual of an elliptic curve E is represented by Ext(E,Gy,)
and the Cartier dual of an affine group scheme G is represented by
Hom(G,Gnp). In the category of elliptic modules the Carlitz module
C plays the role of G,. Taguchi [T] showed that a notion of duality of a
finite t-module can be represented by Hom(G, C) in a suitable category.
Our computation shows that the Ext-group as it stands is rather too
“big” to represent a dual of an elliptic module.

2. Elliptic modules and t-modules

Throughout this paper we fix the following notations: p is a fixed
prime, A is the polynomial ring Fp(t], K is a perfect field containing
A and 6 is the image of ¢t in K. As usual G, x denotes the additive
group scheme over K. It is well known that the ring of endomorphisms
Endg(G,) is a noncommutative polynomial ring K[r| with a commuta-
tion relation,

re=zPr for z€ K.

DEFINITION 1. An elliptic module or a Drinfeld module E of rank r
is the additive group scheme G, together with an A-action

¥ A — Endg(G,) = K]

such that
(i) degree of ¢, in 7 is the same as deg(a)r,
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(ii) the constant term of 1, is the same as the image of a in K.
If (E;, %, ) and (E,,2) are elliptic modules then a morphism from E;
to E, is defined to be an endomorphism u of G, such that uoy; = 9ou.

Anderson [A] gave a definition of higher dimensional analogue of el-
liptic modules.

DEFINITION 2. An abelian t-module over K is the A-module valued
functor E such that

(i) as a group valued functor E is isomorphic to G for some n,

(ii) (¢t — 8)NLie(E) = 0 for some positive integer N,

(iii) there is a finite dimensional subspace V of the group Hom(E, G, )
of the morphisms of K-algebraic groups such that

x>
Hom(E,G,) =) Vot
j=0

A morphism between #-modules is simply a natural transformation of
the functors.

Let K|t, 7] be the noncommutative ring generated by ¢ and 7 over K
with the relations; ¢t = 7t, vt = tz, 71z = 21 for z € K.

DEFINITION 3. A t-motive M is a left K[t, 7]-module with the follow-
ing properties,

(1) M is free of finite rank over K[t],

(i1) (¢t — )N(N/TM) = 0 for some positive integer N,

(iii) M is finitely generated over K{r].

A morphism between t-motives is simply a K[t, 7]-linear map.

Anderson [A] showed that the category of t-modules is anti-equivalent
to the category of t-motives. To state his theorems let E be a t-module
and let M(E) be the set of all morphisms E — G, of K-algebraic groups
equipped with K[t, 7]-module structure,

(zm)(e) = z(m(e)),

(m)(e) = m(e)?,
tm(e) = m(t(e)),

fore € E.
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THEOREM 1. The functor sending E to M(E) is an anti-equivalence
of categories between t-modules and t-motives.

We recall another result of Anderson [A] for future use. Let E be a
t-module. Let

H.(E) = the kernel of exp : Lie(E) — E(K).

THEOREM 2. Let K be the algebraic closure of Fp((1/t)). The fol-
lowing are equivalent:

(1) rank s(H«(E)) = rank(E).

(ii) exp : Lie(E) — E(K) is surjective.

A t-module E satisfying any one of the conditions will be said to be
uniformizable.

3. Extensions of t-modules
In this section we make explicit computation of Ext groups and study

their related properties.

PROPOSITION 1. Let M, and My be t-motives. If
0—-M - M-—-M, -0

is an exact sequence of K|[t,7]-modules, then M is again a t-motive. In
particular, if 0 — E; — E — E, — 0 is an extension of t-modules,
then E is isomorphic to G} for some n.

If Ey and E, are uniformizable, then so is E.

Proof. For the first statement we need to check three conditions of
Definition 3. First M is free of finite rank, since so are M; and Mj.
Second we need to check (¢ — 8)N(M/7M) = 0 for some N. Let (t —
)" (My/TMy) = 0, (t — 6)°(My/7M;) = 0. Since we have an exact
sequence

M]/TM] — M/TM - M2/TM2 — 0,

we see that (¢t — 8)"t*(M/7M) = 0. The third condition is immediate.
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For the last statement, consider the following commutative diagram;
0 — Lie(E;) — Lie(E) — Lie(E;) — 0
| exp | exp L exp
0 — E(K) — EWK) — E)K) — 0.

Our assertion follows since exponential maps are surjective on Ey(K)

and E3(K).

PROPOSITION 2. Let Ey, E3 be t-modules then, we have an isomor-
phism
EXtt—mod(El y EZ) = EXtK[t,T](M(El), M(E2))

Proof. Immediate from Theorem 1 and Proposition 1.

THEOREM 3. Let E be an elliptic module of rank r and C be the
Carlitz module. Then Ext!(E,C) is isomorphic to K” as an abelian

group.
Proof. Write R = K[t,7]. To compute Ext-group we use a free reso-

lution,
dy "—-“t—‘l{)tc

0—R R M(C)—0

where d;(r) = r(t — ) and 7 sends ¢ to ¥C and 7 to 7. Now apply
Hompg(—, M(E)) to the above resolution,

Hom p(M(C), M(E)) — Homgz(R, M(E)) 1 Homg(R, M(E)) -2 0.

Here we identify o € Hom(R, M(E)) with a(1) € M(E) = K[r] and
di(a) = apf — pCa. Hence Ext!(E, C) is isomorphic to K[r]/B where

B={a¢'tE—¢tca|a€K[r]}.

Here we note that B is not a K-submodule of K[r].

To prove our assertion, we claim that for a given f there is a unique
a such that the degree of (f ~ (ayf — ¢ a)) is less than r which is the
rank of E. To prove this we use induction on the degree of f. If the
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degree of f is less than r, then we can choose o to be 0. Now suppose
that deg(f) = n + 1. Since we can write f = bpy17"! + f, where f,
is a polynomial in 7 of degree less than or equal to n and since we are
assuming our assertion for f,, we only need to prove our assertion for
bnt17" 1. First assume (n + 1) < 2r. Then by Euclidean algorithm [A]
in K[r] we see that there are unique a and 7' in K[r] such that
b1 = apf +4' and  deg(y') <,
where deg(v') < r and deg(a) < r since (n + 1) < 2r. Therefore
bot17™ = 0P — e+

where v = 7' + ¥Ca. Now proceed in the same way to get rid of our
extra assumption that (n + 1) < 2r.
Now the map
Ext!(E,C) = K[r]/B — K"

sending f to the coefficients of (f — (apf — ¥Ca)) is obviously an iso-
morphism.

REMARK. The group Ext!(E, C) is not a K-vector space.

PROPOSITION 3. The t-action on Ext'(E,C) = K|r|/B is given by
right multiplication by % or which is the same as left multiplication by

vy
Proof. Consider the commutative diagram

dy=t—ypC
—

0 — R R 5 MC — 0
bt Lt e=¢7
0 — R % R T M@E) — o0
Apply the functor Hompg(—, M(E)) and carefully chase the diagram.
Let E be an elliptic module and C be the Carlitz module. Let
0-C—-&—-E—0

be an extension of algebraic groups. Then by Proposition 1 we see that
€ is isomorphic to G2 as an algebraic group. So the extension £ depends
only on the t-module structure on G2. Given f in Ext*(E,C) = K|[r]/B

we will describe the corresponding extension, namely the t-action on G2.
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THEOREM 4. Let f € Ext'(E,C) and
0> ME)y—-M-—-MC)—0
be the corresponding extension of t-motives. Then M = K[r] & K|[r]
with t-action given by
0, ]

Proof. The extension £ corresponding to f € K|[r]/B is given by

d1=t—¢f‘ T
0 — R — R — M) — 0
17 ! id

0 — M(E) — ME)OR/R — MIC) — 0

where R = {(—rf,di(r))|r € R}. We define a map

¢: M(E)® R/R — K[7] © K[7]
by sending (m, t) to m+ (4 + f) and (m, 7) to ((m+7), 7). For brevity
we write M = K[r]® K|[r]. Now one checks that this is an isomorphism.
The inverse of ¢ sends (a,b) to (a — b, b).

To get the t-action on M we transport the t-action on M(E) @ R/R
via ¢ and send it back to M: To find ¢-action on (a,b) in M we lift it to
(a—b,b) in M(E)® R/R. Hence in M(E)® R/R we have,

ta — b,b) = ((a — BYE, 1h).
Now send this to M via ¢ to get the t-action on M

t(a,0) = (@~ by +b(¥y + ), by).
Now our assertion follows since (pF — ¢E) € B.

Let ¢ be an isogeny of an elliptic module. Then the kernel of ¢ is a
finite ¢-module in the sense of Taguchi [T]. By the standard results of
homological algebra [S], we have an exact sequence,

0 — Hom(G, C) 5 Ext!(E, C) 25 Ext!(E, C).

We have zero on the left because there is no morphisms between the
elliptic modules of different rank. (We are assuming the rank of E is
bigger than 1.) We want to compute the map 6.
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THEOREM 4. §(f) is given by F € K|7]/B such that

F¢ = fyy —4¢ f.

Proof. Consider the following diagram,

d1=t—¢gE T
0 — R — R — M(C) — 0

lF L& lid
0 — ME) Y pME) — MO — 0
| id ! lf

0 — M(E) — M(E) — M(G) — O

Here f*M(E) is the fiber product M(E)zpe)M(C). First lift f to
M(E) which we still call f. Now chase the upper left square to get F’
which satisfies the property F¢ = fipf — C f.
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