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SOLUTIONS OF NONLINEAR FUNCTIONAL
DIFFERENTIAL EQUATIONS IN L? SPACES

K1 S1xk Ha aAND KI-YEON SHIN

1. Introduction

Let X be a real Banach space with norm || - ||. Let T > 0, r > 0
be fixed constants. We denote by L? the usual LP(—r,0; X) with norm
|- |l for 1 < p < oo. Qur object is to study the existence of solutions of
nonlinear functional evolution equations of the type

!
(FDE) (x (t) + A(t)z(t) = G(t,z), 0<t<T,
g = ¢
The symbol z; denotes the function z(6) = z(t + 6), 8 € [—r,0].
For (FDE) we assume the followings :
(A1) There exists a € R such that for each ¢t € [0,T], A(?) + al is
accretive and R(I + AA(t)) = X for 0 < A < A = 1/ max(0, ).
(A2) There exist a continuous function A : [0,7] — X which is of
bounded variation on [0,T] and a continuous nondecreasing function
L : [0,00) — [0, 00) such that

Ax(t)z — Ax(s)z]l < [[R(2) = A(s)| La(llz])(1 + (| 4a(s)=]])
for 0 < A < Xg, 0 < 5, < T, where Ax(t) is the Yosida approximant of

A(t).
(A3) There is a constant 3 > 0 such that

for ¢, € LP and t € [0,T).
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(A4) There are a continuous function & : [0, T] — X which is of bounded
variation on [0,7] and a continuous function L, : [0,00) — [0,00) such
that for 0 <s,t < T and ¢ € L?

G, %) — G(s, )| < [Ik(2) — k()| L2 (1 ]],)-

Many authors have been studied for last two decades the type of
(FDE) with various settings on space X, operators A(t), and initial func-
tion ¢ (cf. Dyson and Villella-Bressan [2, 3, 4], Kartsatos and Parrott 7,
8], and Webb (13, 14]). Recently, Kartsatos and Parrott [7], Tanaka [10]
have proved the existence of generalized solutions of (FDE) assuming
(Al)- (A4) with Lipschitzian ¢. To improve on the initial function, we
take an approach which has been used by Dyson and Villella-Bressan [3],
Webb [14] except showing the existence of Discrete Scheme (DS)-limit
solution to project.

This paper consists of two parts. First we recall the basic nonlinear
operator theory that we use later. Also we define an operator in a prod-
uct space to get a nonautonomous evolution equation. Then, we show
the existence of generalized solutions of (FDE) by projecting solutions in
the product space to X. We also discuss the generalized domain briefly.

2. Preliminaries

Let Y be a real Banach space with its dual Y* and (y,z) denote
the evaluation 2(y) for y € Y and 2z € Y*. Define Jyy = {y* € Y* :
{v,y") = llyll> = lly*[I’}. (Jyy is nonempty for each y € ¥ by the
Hahn-Banach theorem.) The mapping Jy is called the duality mapping
of Y. An operator T : D(T) CY — Y is accretive if for each A > 0 and
z,y € D(A) |z —vy| < |lz —y+ ATz - Ty)||. Equivalently, (see Kato
[5]) T is accretive if and only if for every z,y € Y thereis j € Jy(z —y)
such that (Tz — Ty,j >> 0. An operator T : D(T) CY — Y is said to
be A(w) if for each A > 0 with Aw < 1 and z,y € D(T)

1) le =y + ATz = Ty)|| 2 (1 - Iw)lle -yl
Note that T + wI is accretive if and only if T € A(w). Also (1) implies

that (I + AT)™! exists on R(I + AT) and is Lipschitz continuous with
constant (1 — Aw)™! on R(I + AT).
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The resolvents and Yosida approximants of T, Jy and T}, are defined
by Jay = (I + A\T) 'y and Thy = ;1\~(I — J))y, respectively. It is readily
verified that Thy = TJyy. We define [Ty| by [Ty| = limyyo || Tay||. If
T € A(w) and R(I + AT) =Y for all 0 < A < A, then the limit exists
even though it may be infinite. For such T we define the generalized
domain of T D(T) = {y € Y : |Ty| < oo}. Then D(T) C D(T). For
other properties of Jy, Ty, and |Ty| which hold in a general Banach
space Y, we refer the reader to Crandall and Pazy [1].

We recall that

_ iz hyl i
r2)+ = hli»%l+ h '

An integral solution of (FDE) is a function z : [-r,T] — X such that
zg = ¢, x is continuous and satisfies the inequality

l(2) ~ gl = lla(s) — ]| < / (< —A(T)y + G(r,2,),2(r) — y)4
+ aflz(r) - yll)dr

for all y € D(A(r)), r € [0,T],and 0 < s <7<t <T.
Let Y = L? x X be a Banach space with norm

I{, R}y = (fo l|#(6)11Pd6 + llhll”>%

-T

for every {¢,h} €Y.
Due to Webb [14], the duality mapping Jy of Y is given by following;:

ProposITION 1. If{¢,h} € Y, thenj € Jy({¢, h}) where j is defined
by

({,k},5) = |{, R} "
' ( | <ves@ls@rrds+ i, h*>uhup-2)

-T
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for all {4, k} €Y, ¢* € J1s(¢) and h* € Jx(h).

We define a family of nonlinear operators, for 0 < ¢t < T, B(t) :
D(B(t))CY - Y by

(3) B(t){¢,h} = {-¢',A(t)h — G(t,¢)},
D(B(t)) = {{$,h} € Y : ¢ € W'P(—,0;X), $(0) = h € D(A())}-

PRroPOSITION 2. (Parrott [10], Tanaka [14]) Let {A(2) : ¢t € [0,T]}
satisfy (A1), and suppose G : [0,T] x L? — X satisfies (A3). If {B(t) :
t € [0,T)} is a family of operators in Y defined in (3), then B(t) € A(7v)
for v = max(0,« + 1/p) + B and R(I + AB(t)) = Y for sufficiently small
A>0.

PropPOSITION 3. (Tanaka [14]) Let A(t) and G(¢,-), 0 < t < T,
satisfy (A1)—(A4). Then there exist a continuous function f : [0,T] = Y
which is of bounded variation and a nondecreasing continuous function
L :[0,00) — [0,00) such that

| Ba(t)u — Ba(s)ully < [|F(t) = f($)lly L(lully)(X + [ Ba(s)ully)

for each 0 < 5,t < T, u € Y and sufficiently small A > 0.

THEOREM 1. (Tanaka [14]) Let A(t) and G(t,-), 0 < t < T, satisfy
(A1)-(A4). Then, a family of operators B(t), 0 <t < T, defined in (3)
satisfies followings :

(B1) For each t € [0,T], B(t) € A(y) for v = max(0,a + 1/p) + B, and
R(I + AB(t)) =Y for sufficiently small A > 0.

(B2) There exist a continuous function f : [0,T] — Y which is of
bounded variation and a continuous nondecreasing function L : [0, 00)
— [0, 00) such that

1 Ba(t)u — Ba(s)ully < [1£() = f()lly LUlully )(1 + [ Ba(s)ully)

for 0 < s,t < T, u €Y and sufficiently small X\ > 0.
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3. Main results

‘We now consider a nonlinear evolution equation in Y = L? x X of the
form

(EE) () +Bu(t)=0, 0<t<T, u(0)=uo,
where the operator B(t) is defined in (2) satisfying (B1)-(B2) and for

some uy € D(B(t)). First we note that for each t € {0, T
D(A(t)) C D(A(t)) and D(B(t)) C D(B(t)).

Moreover, the generalized domains D(A(t)) and D(B(t)) are constants
since A(t) and B(t) satisfy the inequalities (A2) and (B2) (cf. Evans
[5]). We denote by D, and Dg, respectively.

Let there exist a sequence of partitions P, = {0 =t <t} < -+ <
Riny = T} and a sequence {u}}, j = 0,1,...,N(n) of elements of ¥
such that

(1) ﬁ:_"Z:l+B(t;})u;?=O’ i=1,2,...,N(n), n=1,2,....

T,
(2) lim,_oo max; << N(n) (1] — t7_;) = 0.
(3) uf = uo.

The step function u, on [0,7] defined by

(t) { Ug, t=0
Up = .
ui, te(tl,t7, 7=12,...,N(n),

J 3
is called DS-approximate solution of (EE).
If DS-approximate solution u,, converges to some continuous function
u uniformly on [0, T], we call it DS-limit solution of (EE).
The next theorem shows the existence of DS-limit solution of (EE).

THEOREM 2. Let B(t), 0 < ¢t < T, satisfy (B1)-(B2). Then for
ug € Dp there exists a DS-limit solution of (EE).

Proof. Suppose we have two DS-approximate solutions un(t), vm,(t)
on [0,T] defined by sequences {t7}, {u"}, j = 0,1,...,N(n) and {{]'},
{vf*'}, k=0,1,2, ..., N(m) with ¥, vi* € D(B(0)) satisfying

im ugy = lim vg" = ug.
n—oo m—oo
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Let @ € D(B(r)) for some r € [0, T]. To simplify notation, we denote by
| - || norm on Y in this proof. Most of the proof is the same way which
Evans ([6]) and Pavel ([11]) have used. First, we show [lu?|| < My, where

M; is independent of n and j. Set y; = 8 =17, 6 = f}c" — fZ‘_l, and
ok = 6kyj/(vj+6k). Let dn, = max; <;j<N(n) ¥j be such that yd, < 1/2.
We estimate |lu} — i||. Indeed,
[uf —all < N5 @iy — To ()il + 172 (£3)a — il
< (=% H{lufoy = @)l + ;1 B(r)il
+ %l £(#7) = FONLIal + 1B(r)al) )}
< (1 =777 (1 = 7i=) " H{llwf—z = all + (75 + v5-1)|B(r)i]
+ (il f@3) = £+ v lF G-y = FODLAENA + [B(r)al)}-

Continuing this process,

n
luf —all = T2 = %) " {llug — &l + 7| B(r)il

=1

+ 2l ) = FEIENal)E + |B(rya)}.

Using (1 — 7;7)~ < €77 < €277, we have

el = Nalle*™ {llug — all + ¢7|B(r)al

+ Z wllfE) = FOILAENA + |B(r)al)}

< M;.

~

Next, we show HEL———_TuJ_—IH < M;, where M, is independent of n and j.
Set a; = |B(t])uf_;| and b; = || f(}) — F(¢7_ I L(JluF_;||). Then, since

|B(#5 Juj_s| < |B(t7_y)uj_]
HFEF) = FE_ONLuF-1 DA + 1B Jui4 1),
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we have

a; < (1—=77)7 (1 +bj)aj-1 +b;.
Thus

u” —ut
”__J___.L_l.”
i
<(1—v7)  ay
<=7 A = -17) 7 = 2 T A 5L+ bje)ajz
+ (1 =117 A = -1 A+ 85)bj 4 bjoa + (L= 1) 7Y
J J
Continuing this process with H(l +b) < exp(z bz), we get
=i =2

I " i lu<(al+zb>exp<zvt">exp(2b)

i=2
Therefore,

I < (e g+ £ x0T exp(E(M3) Vo 5
< (B + 1562) - FEDILAEI)
(1 + B YuzD) + L(M)) exp(29T) exp(L(My) Var )
< M,.

Using the above two results, we take the same steps in the proof of
Lemma 5.1 (Evans [6]) to get the following result :

7 —
— g ol

+ okl f(87) — FEONL(M1)(1 + M)

(1 =i )llu} —opll £

[[ufy —oF"ll +

for 1 < j € N(n), and 1 € k¥ < N(m). Now, we introduce the concept
of the “modulus of continuity” of f to follow Pavel [11]. We apply the
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method of Lemma 2.3 of [11]. Then we get

wjk||uj — vg bl < llug — uoll + [lvg” — uol| + 2(|& — wuol|
+ Cik(B(r)i| + Kp(T)(1 + | B(r)il))

+ KiPColT)Cin + plo)),

where C; ¢ = ((t} - t"‘)2+d t"+d t"‘)l/2 p is the modulus of continuity

of f, and wjx = H(l—m) H(l— 8i7)- Let

i=1

uy, t=0,
un(t) = { 2

uF, te (7,5 =12,...,N(n).

Then, lim,, m— oo [[un(t) — um(t)|| = 0 uniformly on [0, T]. Define u(t) =
limp, o0 un(t). Also we follow the same steps in Theorem 3.1 (Pavel [12])
to show that u(t) is continuous. Therefore, u(t) is a DS-limit solution of

DEFINITION 1. Let 7y, 7, are projections from Y = L? x X into LP

and X, respectively. A function u : [0,7] — Y is called a translation if
mu(t) = z; where z(t) is defined by

_ é(t), -r<t<0,"
2(t) = { mou(t), 0<t<T.

By Plant [13], a DS-limit solution u(t) of (EE) is a translation.

Consider the existence of a DS-limit solution of (FDE). Let ¢ € LP
with ¢(0) € D4. When p = 1, since C = C([-r,0];X) is dense in
L' = LY(—r,0; X) with respect to L'-norm, for every ¢ > 0 there exists
¢ € C such that ||¢ — ¢|l; < e. For ¢ € C, there exists ¢, € C® =
C>°([-r,0]; X) C W11 such that lim ¢, = é with respect to L'-norm.

Thus lim ¢, = ¢ with respect to the L!-norm.
n—-—00

When 1 < p < oo, for a continuous function ¢ € LP with ¢(0) € Dy,
there exists ¢, € C®° C W' such that limp,_.o #n = ¢ with respect to
LP-norm.
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Let us define
¢n(0)7 -r S 6 < 03
P, 6 =0,

where h, € D(A(t)) such that lim,—cc hn = ¢(0) in X for ¢(0) € Da4.
Then ¢, € Wh! and ¢.(0) € D(A(2)). Thus {¢n,¥n(0)} € D(B(t)).
Hence {¢,¢(0)} € Dp. Putting uy = {¢,$(0)}, by Theorem 2, there
exists a DS-limit solution u(t) of (EE) i.e., there exist a sequence of
partitions P, = {0 = t§ <t} < --- < th@my = T} and a sequence
{u}}, 3 =0,1,...,N(n), of elements of ¥ such that

4a(6) = {

i un() = ult) where ua()={ ' )7 "

im up(t) =u where un(t)=9

n~oo u;, tE(tJ 1 ]]
Here,

n

U —
(4) t’T—t—n——+B(t")u 30, 5=12,...,N(n), n=1,2,...,
i
with uj = {4],h]}, uf = {¢n,%a(0)} € D(B(0)),
nli’m ug = uo, nll’rxgﬂsﬁal\yf(n)(tn —t7_,)=0.

If we project (4) into X, we have

n n
-1 nyLn n o n
g AR 3 68

Define
t) { Yu(t), —r<t<0,
Tn = .
h7, te (t7-,t7, i =1,2,...,N(n).
Since limp—oo un(t) = u(t) and AT = my(un(t)), limp—oo za(t) = z(t),
where
M= ), 0<t<T.

Since u(t) is continuous, z(t) is also continuous on [~r, T]. Then z(t) is
a DS-limit solution of (FDE).
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THEOREM 3. Let (A1)-(A4) be satisfied. For every ¢ € L' or for
every continuous ¢ € L? (1 < p < 00), if $(0) € D 4, then there exists a
DS-limit solution of (FDE).

To investigate the relation between a DS-limit solution of (EE) and
an integral solution of (FDE), we use the concept of translation. For
an integral solution of (FDE), we have the similar result of Dyson and
Villella-Bressan [2] with the following stronger conditions than (A2).
(A2)' For single valued A(t), 0 <t < T, there exist a continuous func-
tion h : [0,T] — X which is of bounded variation and a continuous
nondecreasing function L; : [0,00) — [0, 00) such that

|A(t)z — A(s)z|| < ||h(2) — A(s)La(|l=]))(1 + || A(s)=]])
for £ € Dy4.

THEOREM 4. Assume that A(t) : D(A(t)) = Dg — X. Let (Al)-
(A4) be satisfied with X* uniformly convex or let (A1) (A2)' (A3) (A4)
be satisfied. Then, when p = 1, for every ¢ € L* with ¢(0) € D4, and
when 1 < p < oo, for every continuous function ¢ € L? with ¢(0) € Da,
there exists an integral solution of (FDE).

Proof. We note that (A2) with uniformly convex dual X* implies
(A2) and (A2)" implies that (A2). As in the proof of Theorem 3, we
have a DS-approximate solution u,(t) in Y satisfying (4). Since

u;;_u?‘l n\. n __ - _
- t B} =0, j=12,...,N(n), n=12,...,

1

with u} = {¢%, h?}, if we project into X, we have
u + A(EMR? ~ G(t7,4") = 0
t;l - t;'z-—l 27°° 17 ?

forj=1,2,...,N(n),n=1,2,.... Put §; =t} —}_;. Let € D4 be
arbitrary and s € [0,T]. For j* € Jx(h} — z), since
IR — || = (b} —=,5%)
= (h} — hi_1,5%) +{kf_y — 2,5")

< (R} — hF_1,3%) + 1Rf~y — 2| - [|hF — =]



Nonlinear functional differential equations 313

we get
18} — al* = [IhF — 2l - Ih}_y — 2|l < (A} — ATy, 5%)
= 6;(=A(t})RT + G(t7,¢7),5%)
= —(A(t})R] — A(t])z,57) + 6;(A(s)z — A(t])e, )
+6;{=A(s)z + G(t7,67),77)
< §jaf|h} —of|* + 6| A(t])z — A(s)el| - IR} - 2|
+8i{—A(s)e + G(t7,87), b} —z)+.
Hence, by (A2)
1R — 2|l = {|hf — =]
< §jalih} -zl + 6;(|R(tF)z — h(s)z| La(ll<])(1 + || A(s)=]D)
+ 6;(—A(s)z + G(t7,47), b} — z)4.
Iterating for j =i+1,...,k, (1+1 < k), with C = Ly (Jlz|)(1 + || A(s)z])
IR} — z|| = lIR} — <l

k
< Y (al|h} — 2| + ClIa(t})z — h(s)e]|
J=i+l

+ 6;(~A(s)e + G(t}, 87), b7 — o).

Let k = kn, 1 = i, be such that t € (t7 _;,t7 ] and £ € (47 _,,t7 ]. Set
an(0) = t7 for o € (t7_;,17]. Then

Ima(un(®)) — 2] ~ 12 un(®) — 2]
< [ (A9 + 6an(o) mua(o)) malun0) - 214
+ allma(un(@)) — 2l + Cllh(an(e)) — b(s)])do.
Since an(0) — o as n —» oo, passing to the limit or n — oo, we have
Ima(u(®)) — 2] — lma(u(®) ~ 2]
< [ (=AG)2 + Glo,mu(oN,mau() ~ 214
+ allna(u(e)) — 2] + Cllh(o) — h(s)[) .
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nce u(t) is a translation, m(u(t)) = z;, where

_ ¢(t)’ -r St < 0’
=(t) = { ma(u(t)), 0<t<T.

Therefore,
l2(t) — zlf — l|=() — |
< / (—A()e + Glo,20),a(0) — o)+
+aflz(o) — z|| + C[|h() — h(s)||)do.
It implies that z(¢) is an integral solution of (FDE).
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