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GLOBALLY DETERMINED ALGEBRAS

YounG Yuc KANG

0. Introduction

This paper is a contribution to the study of the isomorphism problems
for algebras. Among the isomorphism problems, that of global determi-
nation is investigated here. That is, our investigation of the problems is
concerned with the question whether two algebras are isomorphic when
their globals are isomorphic. The answer is not always affirmative. The
counterexample, due to E. M. Mogiljanskaja, is the class of all infinite
semigroups. But T. Tamura and J. Shafer (6] proved that the class of
all groups is globally determined and announced the same result for the
class of rectangular bands. VaZenin [7] proved that for any set X, the
transformation semigroup T'x must be isomorphic to any semigroup S
for any P(S) ~ P(Tx).

We will show that the class of all Heyting algebras is globally deter-
mined, directly. Moreover we will investigate to the class of all bounded
lattices and the class of all generalized Boolean algebras.

The rest of this paper is divided into two sections. In section 1, we will
give some basic definitions and facts. And finally in the last section we
shall prove that the referred class are globally determined. For standard
concepts and facts from lattice theory, we refer the reader to Gratzer[4].
However we use + and - instead of V and A for the lattice operation.

1. Preliminaries

Given an algebra A = (A, F) where F is a set of operations, we define
the global, P(A), of the A to be the family of all complexes of A with
operation given by

f(B1,.-yBr) = {f(b1,...,b,) : b; € B;}
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whenever f is an n-ary operation belonging to F and each B; is a complex
of A(:=1,2,...,n).

We call a class K of algebra globally determined if any two members
of K having isomorphic globals must themselves be isomorphic.

We now consider some basic definitions and notations, and state sev-
eral basic properties.

DEFINITION 1.1. An algebra (H,+,-,—,0,1) with three binary and
two nullary operations is a Heyting algebra if it satisfies:
(i) (H,+,") is a distributive lattice.
(ii) z-0=0and z+1=1.
(iii) ¢ » z = 1.
(¥) (2 - )y =yand 2z = y) = 29. ¢ = gz = (z > y)-(& = 2)
and (z+y) = 2=(z —> z2) (y— z) for any z,y and z € H.

DEFINITION 1.2. A generalized Boolean algebra is a relatively com-
plemented distributive lattice with a bottom element 0.

Let L be a lattice and let I(L) denote the set of all ideals of L and
let Io(L) = I(L) U 4.

LEMMA 1.3. I(L) and Iy(L) are posets under inclusion and as posets
they are lattices.

In fact 7@ J = (I U J] if we agree that (¢] = ¢ where (H] denote
the ideal generated by a subset H and € denotes the join operation in
I(L). And I-J=InJfor I,J € I(L).

In general,

D rer)=Jur1re )
where @ I, denote the join of all I}s.

COROLLARY 1.4. Let Ix, ) € A be ideal and let I = @(Ix | X € A).
Then ¢ € I if and only if 1 < ja, + ja, + '+ + Ja,_, for some integer
n > 1 and for some Ag,...,Ap—1 € A, jx, €I, (:=0,...,n—-1).

Now we observe that the formula:
(al@ (@] =(a+bl, (aO(b]=(a-b]
where © is the meet operation in I(L).

Since a # b implies that (a] # (b], these formulas yield following
corollary:
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COROLLARY 1.5. A lattice L can be embedded in I(L) and a — (d]
is an embedding.

From above corollary, we note that a lattice L is isomorphic to the
set of all principal ideals in L.

LEMMA 1.6. Let I be an ideal in a lattice L. Then I is principal if and
only if, for any updirected family {I} : k € A} of ideals, I < s It
implies that I < I; for j € A.

For any algebra A = (A,F), a singleton member of P(A) will fre-
quently be identified with the element it contains.

2. Main Results

LEMMA 2.1. Every isomorphism between globals of lattice which have
a top and a bottom element maps a top and a bottom element to a top
a bottom element, respectively.

Proof. Let Ly and Lj be lattices with a top and a bottom element, 1,
0, and 1’, 0', respectively. Let ¥ : P(Ly) — P(L2) be an isomorphism.
Then for any Y € P(L,), there exists X € P(L;) such that ¥(X) =Y.
Thus we have ¥(1) +Y = ¥(1) + ¥(X) = ¥(1 + X) = ¥(1) and
U(1)+1' =1'. Hence ¥(1) = 1. Also we have ¥(0)-Y = ¥(0)- ¥(X) =
¥(0-X) = ¥(0) and ¥(0)-0' = 0'. Thus ¥(0) = 0'. The proof is

complete.

THEOREM 2.2. Let (Hy,+,,—,0,1) and (H,,+,-,—,0',1') be Heyt-
ing algebras. If P(H,) & P(H,), then Hy & H,. Moreover every iso-
morphism of P(H,) and P(H,) restricts to an isomorphism of H; and
H,.

Proof. Let ¥ : P(H;) — P(H:) be an isomorphism. Let z € H;
and A = ¥(z). Then we show that A is a singleton. Since z — z = 1,
by lemma 2.1, we have A — A = 1'. Thus for any a,b € A, a — b =
”=b—a. Sowehavea=a-1"=a-(a—b=a-b=b-a=b-(b—
a) =b-1' = b, and hence 4 is a singleton. Therefore ¥ maps singletons
to singletons. Similarly, ¥~! maps singletons to singletons. The proof
is complete.
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LEMMA 2.3. Let Ly and Lo be lattices having a top element 1 and
1', respectively. And let ¥ : P(Ly) — P(L,) be an isomorphism. Then
U(Ly)U{1'} is a filter of L.

Proof. Let K be a nonempty subset of L where ¥(K) = (L, )U{1'}.
Since ¥ is an isomorphism, ¥(L,) U {1'} is a sublattice of Ly. Thus K
is a sublattice of Ly. Since ¥(K) = U(K + L,), K = K + L;. Therefore
K is a filter of Ly. Let T € P(L;) where ¥(T) = L,. Since K is a
filter of Ly, K+ T C K. Also since 1' € ¥(K), ¥(K): L, = L,. Hence
U(K-T)=9(T). Thus K-T=T. Let k € K. Then k € K +T because
k=k+k-tforanyt€T. Thus K C K+ T. sowehave K =K + T.
Thus ¥(K) = ¥(K+T) = ¥(K)+¥(T) = ¥(K)+ Ly. Therefore ¥(K)
is a filter of L,.

Dually, we have the following corollary.

COROLLARY 2.4. Let Ly and L, be lattices having a bottom element
0 and 0, respectively. And let ¥ : P(L;) — P(L,) be an isomorphism.
Then ¥(L;) U {0'} is an ideal of L,.

LEMMA 2.5. Let L and Ly be bounded lattices and let ¥ be an
isomorphism from P(Ly) onto P(L;). Then ¥(L1)U{0',1'} = L, where
0' and 1' are a bottom element and a top element of Lj, respectively.

Proof. If Ly is a chain of two elements, then, by lemma 2.1, ¥(L;) =
L,. We are done. Assume there exists an element z(# 0',1') of L,.
Suppose z+y = 1' for any y € ¥(L;). Let A € P(L;) with ¥(4) = {z}.
Then ¥(A) + ¥(Ly) = {1'}. By lemma 2.1, A+ L; = {1} where 1
is a top element of L;. Thus A = {1}. Therefore z = 1'. We have
a contradiction. Thus there exists an element y of ¥(L,) such that
z+y#1. Let z=2+y. Then z € ¥(L;) U {1'} because, by lemma
2.3, U(Ly)U {1'} is a filter of L,. Since z # 1', z € ¥(L,). By corollary
2.4, ¥(Ly)U {0'} is an ideal of L,. Hence z € ¥(L;) U {0'}. Therefore
U(L;)U {0',1'} = Ly. The proof is complete.

LEMMA 2.6. Let L; and Ly be bounded lattices and let ¥ be an
isomorphism form P(L,) onto P(Lz). If I is a proper ideal of L,, then
W(I) is an ideal of L.

Proof. Let T,W,K € P(L,) with ¥(T) = L,, ¥(W) = ¥(L,) U {0'}
and U(K) = ¥(L;) U {1'} where 0' and 1’ are a bottom element and
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a top element of L. Then T, W, and K are sublattices of L; because
U is an isomorphism. Since W(Ly) - (¥(Ly) U {0'}) = ¥(L;) U {0'},
Li-W = W. Thus W is an ideal of L;. Also L; + K = K because
U(Ly)+ (¥(L1)U{1'}) =T(L,)U{1'}. Thus K is a filter of L;.

Claim 1: KNW =T.

By lemma 2.5, Ly = ¥(L;) U {0',1'}. Hence L; - T = W. Thus
TCW. AlsoL; +T =K. Thus T C K. Sowe get T C KNW. Now
show that KNW CT. Let z € KNW. Then z € K and z € W. Since
T K=TandT+W=T,z+z-t€Tforanyt e T. Hencez € T.
Thus KNW C T. Therefore KNW =T.

Claim 2: KUW = L;.

Let P=KUW. Since K+T =Kand W+T=T,P+T =K.
Hence ¥(K) =¥(P+T)=Y(P)+¥(T)=¥(P)+(¥(L)u{0,1}) =
U(L1) U {1'} U ¥(P) = ¥(K)U ¥(P). Thus ¥(P) C ¥(K). Since
P.T=W,¥W)=Y(P) - (¥(L)U{0,1'})=Y(L)UP(P)U{0'} =
U(W)U ¥(P). Thus ¥(P) C U(W). Also since P+ W = P, ¥(P) =
U(P+W)=¥(P)+¥(W)=Y(L,)UT(P). So ¥(L,)) C ¥(P). Thus
V(L) C¥(P)C ¥(K)N¥(W)=¥(L,). Therefore KUW = L,.

Claim 3: T U {0,1} = Ly where 0 and 1 are a bottom element and a
top element of L;.

Let A=TU{0}. Then A+ W =W, A-T=A, A+ L, = L, and
A-L3 =W. Hence ¥(W) = ¥(A) + (W) = ¥(A)+ (¥(L;) U {0'}) =
U(L1) U Y(A). So ¥(A) = U(W). Therefore A =W. Let B=TU {1}.
Then B+ W =B,B-K=K,B+ L, =K, and B-L; = L;. Hence
U(B) =¥(B)+¥(W)=9(B)+ (¥(L)U{0'}) = ¥(K)U ¥(B). Thus
U(K) C ¥(B). Also ¥(K) = ¥(B) - ¥(K) = ¥(B) - (¥(L)U{(1"}) =
U(L;) U ¥(B). Thus ¥(B) C ¥(K). So ¥(B) = ¥(K). Thus B = K.
Therefore AUB = KUW. By claim 2, AUB = L;. Also AUB =
TU{0}UTU{1} =TU{0,1}. Therefore TU {0,1} = L.

Let I be a proper ideal of L;. Clearly ¥([) is a sublattice of L,. So it
suffices to show that W(I). Ly = ¥(I). By claim 3, I C T'U {0}. Hence
ICcI-T. AlsoI-T C I because I is an ideal of L;. Thus - T = 1.
Hence ¥(I) =9(I-T) = ¥(I)- ¥(T) = ¥(I)- Ly. Therefore ¥(I) is an
ideal of Lp. The proof is complete.

THEOREM 2.7. Let L; and L, be bounded lattices. If P(Ly)
P(L3), then Ly £ L,.
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Proof. Let ¥ : P(L1) — P(L;) be an isomorphism. By Corollary
1.5, a lattice is isomorphic to the lattice of its principal ideals. INJ = I-J
and, by lemma 1.6, the principal ideals of L are the compact elements
of the ideal lattice I(L). Also by lemma 2.1, ¥({1}) = {1'}. Thus it
is enough to show that ¥ and ¥~! map proper ideals to proper ideals.
Since U is an isomorphism, we may deal only with ¥. Let I and J be
proper ideals in Ly such that I € J. Then by lemma 2.6 ¥(I) and ¥(J)
are ideals in Ly. Also ¥(I) C ¥(J). Thus we have two cases.

a) ‘I’(L]) = Lz.
b) ¥(L,) is not an ideal in L,.
Thus ¥(I) and ¥(J) are proper ideals in L,. The proof is complete.

LEMMA 2.8. Let By and B; be generalized Boolean algebras and
¥ : P(B;) — P(B2) be an isomorphism. Then 0 € ¥(B,) where 0 is a
bottom element of Bj.

Proof. If B, is a chain of two elements or one element, then by lemma
2.1, ¥(B;) = B;y. So we are done. Now we will prove this lemma in
By, >2 '

Claim that ¥(B;) contains at least two comparable non-zero elements.
If ¥(B;) = y1 for some y; € Bz, then y; is non-zero because ¥(0r,) =0
by Lemma 2.1. Since, by corollary 2.4, ¥(B;)UO0 is an ideal of B,, y; is
an atom of B;. Also since B; has more than two elements, there exists
y2 € By such that y; # y; and y; < yo. Since B, is a generalized Boolean
algebra, there exists y| € B; such that y; -y} =0 and y; + y; = y2 and
we note that y] is non-zero. Let ¥(K) = y;. Then ¥(B;) - ¥(K) = 0.
Thus By - K = 07, and hence K = 0r,. Thus We get a contradiction.
If ¥(B;) = {0,y;} for some y; € By, then by the sane method above,
we get a contradiction. Thus W(B;) contain at least two comparable
non-zero elements. By claim, there exist z,y € ¥(B;) such that z,y
are non-zero elements and ¢ < y. Now z € [0,y]. Thus there exists
z'(# 0) € By such that -2’ =0, z + &' = y. Since {0} U ¥(B,) is an
ideal, z' < y and ¥(By) is a sublattice of Bz, then 0 = z - ' € ¥(B,).

The proof is complete.

THEOREM 2.9. Let By and B, be generalized Boolean algebras. If
P(B:) ~ P(B,), then By ~ B;. Moreover, every isomorphism of P(B1)
onto P(B;) restricts to an isomorphism of B; onto Bj.
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Proof. Let ¥ : P(B;) — P(B;) be an isomorphism. As referred in the
proof of theorem 2.7, it is enough to show that ¥ map ideals to ideals.
Since I is an ideal in By, I+I = I. Thus ¥(I) is a sublattice of By. Next
we want to show that for any @ € ¥(I) and b € B;, a-b € ¥(I). It suffices
to show that W(I)- B, = ¥(I). Let ¥(A) = B,. Since I is an ideal in
By, I-A CI. Since I is an ideal in By, ¥(I)-¥(By) = ¥(I- By) = ¥(I).
Also, by Lemma 2.8, 0 € (B, ). Hence 0 € ¥(I). Thus B, C ¥(I)+ B;.
Obviously ¥(I)+ B, C By. Thus ¥(I)+ B, = B; and hence I + 4 = A.
Now for any : € I, i +a € A. So I C I- A because ¢ = i( + a).
Thus U(I) - B, = ¥(I). Therefore ¥(I) is an ideal in B,. The proof is

complete.

COROLLARY 2.10. The class of all Boolean algebras is globally de-
termined.

Proof. By the fact that a Boolean algebra is a generalized Boolean
algebra having a top element.
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