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UPPER BOUNDS FOR ASSIGNMENT FUNCTIONS
GWANG YEON LEE

Let R = (r1,72,...,7m) and S = (81, $2,...,8,) be positive integral
vectors satisfying ry +rg 4+ 7, = 81 + 82 + -+ sp, and let U(R, 5)
denote the class of all m x n matrices A = [a;;] where a;; = 0 or 1 such
that

n m

(1.1) Za,‘k:n‘, ZijZSj, t=1,...,m, 3=1,...,n.

k=1 k=1

Thus R is the row sum wvector and S is the column sum vector of every
matrix in U(R,S). We assume throughout that 331", r; = 3.7 4,
ie., U(R,S) # 0. Let U(R,S) denote the convez hull of U(R,S). Let
X =|[zi;] be an m x n matrix. We define the support of X to be the set
supp(X) = {(4,7) : zij # 0}. The assignment function Pg s(-) is defined
by

(1.2) Prs(X)= Y I =i

AEU(R,S) (i,j)esupp(A)

Brualdi, Hartfiel and Hwang [1] determined some bounds when R =
(1,...,1) is the m-tuple of 1I’s and S = (s1,...,3,), and the author
determined the various bounds.

For integers k,n,1 < k <n, let Vi , denote the set of all n x 1 (0,1)-
matrices whose entries have sum k. For real n-vectors, i.e., real n x 1
matrices X and y we say that x is majorized by y (or y majorizes x),
written as x < y if

(1.3) max{v'x : v € Vi n} < max{vly : v € Vi ,}
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for all k¥ = 1,2,...,n and equality holds in (1.3) when k¥ = n. x is
said to be submajorized by y, written as x <, y, if (1.3) holds for all
k=1,2,...,n.

Let U C R". A function ¢ : U — R is called Schur-convez (Schur-
concave) if for x,y € U, x < y implies that ¢(x) < ¢(y) (resp. ¢(x) >
¢(y)). If, in addition, ¢(x) < ¢(y) whenever x < y but x is not a
rearrangement of y, then ¢ is said to be strictly Schur-convez on U.
Strictly Schur concavity on U is defined similarly. If U = R", then ¢
is simply said to be Schur- convex or strictly Schur-convex omitting “on
R"”. Of course, ¢ is Schur-convex if and only if —¢ is Schur-concave.

Denote by Si(x) the kth elementary symmetric function of x =
(x1,22,...,24)" That is,

n

Se(x)=1, S5(x)= Zx,-, Sa(x) = Z TiTj,

i=1 i<j

Sg(x) = Z TiTjTEy <oy Sn(x) == H.’I),‘.
=1

i<j<k

Let R} = {(21,...,2,) : 0 < z; forall i=1,...,n} and let R}, =
{(z1,...,20): 0 < z; forall 1 =1,...,n}.

LEMMA 1.[3]. The function Si(xX) is increasing and Schur-concave on
RY. If k # 1, Sy is strictly Schur-concave on R1+

Let e =(1,...,1,0,...,0) be the n-tuple vector such that the num-
ber of 1 is k.

THEOREM 2. Let x €e R}, 0 < z; < 1,7 =1,2,...,n. If x < e,
then Sk(x) > 1 for all k, 2 < k < n, with equality if and only if x is a
rearrangement of ey.

Proof. If x < e, then Si(x) > 1, by lemma 1. We will prove that
the equality holds if and only if x is a rearrangement of e;. If x is
a rearrangement of eg, then Sx(x) = 1. Now, suppose that x is not
rearrangement of ex. Let ¢ be the number of non-integers in x. Then
2<t<n LetD={x=(z1,...,2p,) ER" 12y 222 >--- > z,} and
we may assume that x € D, without loss of generality. By induction on



Upper bounds for assignment functions 281

t, if t = 2, then we may assume that zj,zk+1 are not integers. Since
X <ep, Tkt T =1,z =--=2)1=land g4, =+ =2, =0.

Sp(x) =z + zp41 + (k= Dzkzrs
=(k— 1)z +1> 1.

Assume true for n — 1, and consider n. Let x be the vector that have
n nonintegers. We can choose the vector y such that x <y, y =
(y1,Y2,---Yn) € D and the number of nonintegers is n — 1. Then, by
hypothesis, Sk(y) > 1. Since Si is Schur-concave, Sx(x) > Si(y) > 1.
Hence Sk(x) > 1. Therefore, if Si(x) = 1, then x is a rearrangement of
ex. The proof is completed.

THEOREM 3. Let R = kE,, and S = (s1,...,3n) be positive integral
vectors satisfying 3_, s; = mk. For X € U(R, S),

(2.1) PR’s(X) S Hsk(xil,wiz,...,.’l}in)
=1
with equality if and only if X € U(R, S).
Proof. Since R = kE,, = (k,k,...,k), every term of the expansion

Prs(X)= Y. ][ =i

A€EU(R,S) ai; #0
uppear in the expansion of -, Sk(zi1,...,Zin). And

(mlj“mljz,' e amljk)(:r?jng“'?jza"-’m2jk)" '(xnjlymnjzv" ',"I"njk)

appears in the expansion of H:’;l Sk(zi1,Zi2,...,Tin) but does not ap-
pear in the expansion of Pp 5(X). So Pg s(X) < Hf}__l Sk(zi1, Tizy - -+
Tin), for all X € U(R,S). If X € U(R,S), then Pp s(X) = 1. Since
each row vector of X is a rearrangement of ex, []iv, Sy = 1. Hence,
for X € U(R,S), Prs(X) = []i, Sk. Now, we will prove that if
Prs(X) = [[Z, Sk, then X € U(R,S). Suppose that X ¢ U(R,S).
Then there is a column with noninteger entries. Without loss of general-
ity, we may assume that the first column have noninteger entries. Then




282 Gwang Yeon Lee

the first column at least have s; + 1 many nonzero entries. So, without
loss of generality, we may assume that z;; #0,¢=1,2,...,s;+ 1. Then
T11%21 Tey411 > 0 and z11Z91 -« T4, 41161 > 0 appear in the expan-
sion of []i, Sk but do not appear in the expansion of P g(X). That
is, Prs(X) < [1i%, Sk(zi1,...,%in). This is a contradiction. Therefore,
X € U(R,S).

COROLLARY 4. Let R =kE,, and S = (s1,...,3n) be positive inte-
gral vectors satisfying E;-;l sj = km. For all X € U(R, S),

(22) Prs(X) < [(’;) (g)k]m

Proof. Since (;’%,,%) < (Zi1y...,%in) and Sy is a Schur-concave

function,
k k n\ [k\*
Sk(wil)'-wmin)Ssk(;,...,;)z <k> (;> )

Therefore, by theorem 4,

s =[(1) (5]

COROLLARY 5. Let R = 2E,, and S = (s1,...,8,) be positive inte-

gral vectors satisfying E;-'___l sj =2m. For all X e U(R, S),

n

(2.3) Pps(X) < (2 - —z—)m

If n = 2, then the equality holds.

L 2 2 2 .
Proof. Foralli =1,2,...,m, (%, %,...,%) < (%i1, Tiz,. .., Tin). Since
Sk is Schur-concave,

Sy (@it Tin) < 52(%,...,%) - (;) (%)2
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Since PR,S(X) < H:ll Sa(i1y ... Tin),

LEMMA 6. For integer n > 2,

n! 1\ *
. — < | =
with equality holds for n = 2.

Proof. By induction on n, if n = 2 then'equality holds. If n = 3, then
3315 =2 < (})? . Assume true for n — 1, and consider n. That is,

il L (Y

1
n! 1 1 2 1
— =~ <= -
n®(n—1)""1 = (2) nn-1

| 25t — 1yn—1
- =< (1> (n=D"

nn—1

()

2<(1+ ;1—1)""1 for n > 2, since (1+ %)n is an increasing function,
(1+4)"=2forn=1and2< (1+—71;)nforn22. So, (2"t < 1.

Hence,
n-—1 n
n! 1\ 71 1\?
RAGIPSN el i s
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Therefore, F?"? < (%) ? for integer n > 2.

By the above lemma,

() < () —ers(3)

2 n
RS )E
2(n—1) < n{n —21)
no 7 (a)w
@2__2_ < n(n-21)
n (nh)»
_2\" _ (a(n=D\" _ (a)"F
25) =(-2) s( e ) =Gl

Note that the right term in (2.5) is the upper bound when R = 2E,,
by the Theorem 2.1 {2]. Thus, in this case, the upper bound in (2.3)

sharper than that of Theorem 2.1 [2].
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