UPPER BOUNDS FOR ASSIGNMENT FUNCTIONS

GWANG YEON LEE

Let $R = (r_1, r_2, ..., r_m)$ and $S = (s_1, s_2, ..., s_n)$ be positive integral vectors satisfying $r_1 + r_2 + \cdots + r_m = s_1 + s_2 + \cdots + s_n$, and let $\mathcal{U}(R, S)$ denote the class of all $m \times n$ matrices $A = [a_{ij}]$ where $a_{ij} = 0$ or 1 such that

(1.1)
$$\sum_{k=1}^{n} a_{ik} = r_i, \quad \sum_{k=1}^{m} a_{kj} = s_j, \quad i = 1, \dots, m, \ j = 1, \dots, n.$$

Thus R is the row sum vector and S is the column sum vector of every matrix in $\mathcal{U}(R,S)$. We assume throughout that $\sum_{i=1}^{m} r_i = \sum_{j=1}^{n} s_j$, i.e., $\mathcal{U}(R,S) \neq \emptyset$. Let $\overline{\mathcal{U}(R,S)}$ denote the convex hull of $\mathcal{U}(R,S)$. Let $X = [x_{ij}]$ be an $m \times n$ matrix. We define the support of X to be the set $\sup_{i=1}^{n} (x_i, j) : x_{ij} \neq 0$. The assignment function $P_{R,S}(\cdot)$ is defined by

(1.2)
$$P_{R,S}(X) = \sum_{A \in \mathcal{U}(R,S)} \prod_{(i,j) \in \text{supp}(A)} x_{ij}.$$

Brualdi, Hartfiel and Hwang [1] determined some bounds when R = (1, ..., 1) is the *m*-tuple of 1's and $S = (s_1, ..., s_n)$, and the author determined the various bounds.

For integers $k, n, 1 \le k \le n$, let $V_{k,n}$ denote the set of all $n \times 1$ (0,1)-matrices whose entries have sum k. For real n-vectors, i.e., real $n \times 1$ matrices \mathbf{x} and \mathbf{y} we say that \mathbf{x} is majorized by \mathbf{y} (or \mathbf{y} majorizes \mathbf{x}), written as $\mathbf{x} \prec \mathbf{y}$ if

(1.3)
$$\max\{\mathbf{v}^t\mathbf{x}:\mathbf{v}\in V_{k,n}\} \le \max\{\mathbf{v}^t\mathbf{y}:\mathbf{v}\in V_{k,n}\}$$

Received December 8, 1993.

for all k = 1, 2, ..., n and equality holds in (1.3) when k = n. \mathbf{x} is said to be *submajorized by* \mathbf{y} , written as $\mathbf{x} \prec_w \mathbf{y}$, if (1.3) holds for all k = 1, 2, ..., n.

Let $U \subset \mathbf{R}^n$. A function $\varphi : U \to \mathbf{R}$ is called Schur-convex (Schur-concave) if for $\mathbf{x}, \mathbf{y} \in U$, $\mathbf{x} \prec \mathbf{y}$ implies that $\varphi(\mathbf{x}) \leq \varphi(\mathbf{y})$ (resp. $\varphi(\mathbf{x}) \geq \varphi(\mathbf{y})$). If, in addition, $\varphi(\mathbf{x}) < \varphi(\mathbf{y})$ whenever $\mathbf{x} \prec \mathbf{y}$ but \mathbf{x} is not a rearrangement of \mathbf{y} , then φ is said to be strictly Schur-convex on U. Strictly Schur concavity on U is defined similarly. If $U = \mathbf{R}^n$, then φ is simply said to be Schur-convex or strictly Schur-convex omitting "on \mathbf{R}^n ". Of course, φ is Schur-convex if and only if $-\varphi$ is Schur-concave.

Denote by $S_k(\mathbf{x})$ the kth elementary symmetric function of $\mathbf{x} = (x_1, x_2, \dots, x_n)^t$. That is,

$$S_0(\mathbf{x}) \equiv 1, \quad S_1(\mathbf{x}) = \sum_{i=1}^n x_i, \quad S_2(\mathbf{x}) = \sum_{i < j} x_i x_j,$$
$$S_3(\mathbf{x}) = \sum_{i < j < k} x_i x_j x_k, \dots, \quad S_n(\mathbf{x}) = \prod_{i=1}^n x_i.$$

Let $\mathbf{R}_{+}^{n} = \{(x_{1}, \dots, x_{n}) : 0 \leq x_{i} \text{ for all } i = 1, \dots, n\}$ and let $\mathbf{R}_{++}^{n} = \{(x_{1}, \dots, x_{n}) : 0 < x_{i} \text{ for all } i = 1, \dots, n\}.$

LEMMA 1.[3]. The function $S_k(\mathbf{x})$ is increasing and Schur-concave on \mathbf{R}_{+}^n . If $k \neq 1$, S_k is strictly Schur-concave on \mathbf{R}_{++}^n .

Let $e_k = (1, \dots, 1, 0, \dots, 0)$ be the *n*-tuple vector such that the number of 1 is k.

THEOREM 2. Let $\mathbf{x} \in \mathbf{R}^n_+$, $0 \le x_i \le 1$, i = 1, 2, ..., n. If $\mathbf{x} \prec e_k$, then $S_k(\mathbf{x}) \ge 1$ for all $k, 2 \le k \le n$, with equality if and only if \mathbf{x} is a rearrangement of e_k .

Proof. If $\mathbf{x} \prec e_k$, then $S_k(\mathbf{x}) \geq 1$, by lemma 1. We will prove that the equality holds if and only if \mathbf{x} is a rearrangement of e_k . If \mathbf{x} is a rearrangement of e_k , then $S_k(\mathbf{x}) = 1$. Now, suppose that \mathbf{x} is not rearrangement of e_k . Let t be the number of non-integers in \mathbf{x} . Then $2 \leq t \leq n$. Let $\mathcal{D} = \{\mathbf{x} = (x_1, \ldots, x_n) \in \mathbf{R}^n : x_1 \geq x_2 \geq \cdots \geq x_n\}$ and we may assume that $\mathbf{x} \in \mathcal{D}$, without loss of generality. By induction on

t, if t=2, then we may assume that x_k, x_{k+1} are not integers. Since $\mathbf{x} \prec e_k, x_k + x_{k+1} = 1, x_1 = \cdots = x_{k-1} = 1$ and $x_{k+2} = \cdots = x_n = 0$.

$$S_k(\mathbf{x}) = x_k + x_{k+1} + (k-1)x_k x_{k+1}$$

= $(k-1)x_k x_{k+1} + 1 > 1$.

Assume true for n-1, and consider n. Let \mathbf{x} be the vector that have n nonintegers. We can choose the vector \mathbf{y} such that $\mathbf{x} \prec \mathbf{y}$, $\mathbf{y} = (y_1, y_2, \dots y_n) \in \mathcal{D}$ and the number of nonintegers is n-1. Then, by hypothesis, $S_k(\mathbf{y}) > 1$. Since S_k is Schur-concave, $S_k(\mathbf{x}) \geq S_k(\mathbf{y}) > 1$. Hence $S_k(\mathbf{x}) > 1$. Therefore, if $S_k(\mathbf{x}) = 1$, then \mathbf{x} is a rearrangement of e_k . The proof is completed.

THEOREM 3. Let $R = kE_m$ and $S = (s_1, \ldots, s_n)$ be positive integral vectors satisfying $\sum_{j=1}^n s_j = mk$. For $X \in \overline{\mathcal{U}(R,S)}$,

(2.1)
$$P_{R,S}(X) \leq \prod_{i=1}^{m} S_k(x_{i1}, x_{i2}, \dots, x_{in})$$

with equality if and only if $X \in \mathcal{U}(R, S)$.

Proof. Since $R = kE_m = (k, k, ..., k)$, every term of the expansion

$$\mathrm{P}_{R,S}(X) = \sum_{A \in \mathcal{U}(R,S)} \prod_{a_{ij} \neq 0} x_{ij}$$

appear in the expansion of $\prod_{i=1}^{m} S_k(x_{i1}, \ldots, x_{in})$. And

$$(x_{1j_1}, x_{1j_2}, \ldots, x_{1j_k})(x_{2j_1}, x_{2j_2}, \ldots, x_{2j_k}) \cdots (x_{nj_1}, x_{nj_2}, \ldots, x_{nj_k})$$

appears in the expansion of $\prod_{i=1}^m S_k(x_{i1}, x_{i2}, \ldots, x_{in})$ but does not appear in the expansion of $P_{R,S}(X)$. So $P_{R,S}(X) \leq \prod_{i=1}^m S_k(x_{i1}, x_{i2}, \ldots, x_{in})$, for all $X \in \overline{\mathcal{U}(R,S)}$. If $X \in \mathcal{U}(R,S)$, then $P_{R,S}(X) = 1$. Since each row vector of X is a rearrangement of e_k , $\prod_{i=1}^m S_k = 1$. Hence, for $X \in \mathcal{U}(R,S)$, $P_{R,S}(X) = \prod_{i=1}^m S_k$. Now, we will prove that if $P_{R,S}(X) = \prod_{i=1}^m S_k$, then $X \in \mathcal{U}(R,S)$. Suppose that $X \notin \mathcal{U}(R,S)$. Then there is a column with noninteger entries. Without loss of generality, we may assume that the first column have noninteger entries. Then

the first column at least have $s_1 + 1$ many nonzero entries. So, without loss of generality, we may assume that $x_{i1} \neq 0$, $i = 1, 2, \ldots, s_1 + 1$. Then $x_{11}x_{21} \cdots x_{s_1+11} > 0$ and $x_{11}x_{21} \cdots x_{s_1+11}\varepsilon_1 > 0$ appear in the expansion of $\prod_{i=1}^m S_k$ but do not appear in the expansion of $P_{R,S}(X)$. That is, $P_{R,S}(X) < \prod_{i=1}^m S_k(x_{i1}, \ldots, x_{in})$. This is a contradiction. Therefore, $X \in \mathcal{U}(R, S)$.

COROLLARY 4. Let $R = kE_m$ and $S = (s_1, ..., s_n)$ be positive integral vectors satisfying $\sum_{j=1}^n s_j = km$. For all $X \in \overline{\mathcal{U}(R, S)}$,

(2.2)
$$P_{R,S}(X) \le \left[\binom{n}{k} \left(\frac{k}{n} \right)^k \right]^m.$$

Proof. Since $(\frac{k}{n}, \ldots, \frac{k}{n}) \prec (x_{i1}, \ldots, x_{in})$ and S_k is a Schur-concave function,

$$S_k(x_{i1},\ldots,x_{in}) \leq S_k(\frac{k}{n},\ldots,\frac{k}{n}) = \binom{n}{k} \left(\frac{k}{n}\right)^k.$$

Therefore, by theorem 4,

$$P_{R,S}(X) \le \left[\binom{n}{k} \left(\frac{k}{n} \right)^k \right]^m$$
.

COROLLARY 5. Let $R = 2E_m$ and $S = (s_1, \ldots, s_n)$ be positive integral vectors satisfying $\sum_{j=1}^n s_j = 2m$. For all $X \in \overline{\mathcal{U}(R,S)}$,

$$(2.3) P_{R,S}(X) \le \left(2 - \frac{2}{n}\right)^m.$$

If n = 2, then the equality holds.

Proof. For all $i=1,2,\ldots,m, (\frac{2}{n},\frac{2}{n},\ldots,\frac{2}{n}) \prec (x_{i1},x_{i2},\ldots,x_{in})$. Since S_k is Schur-concave,

$$S_2(x_{i1},\ldots,x_{in}) \leq S_2(\frac{2}{n},\ldots,\frac{2}{n}) = \binom{n}{2} \left(\frac{2}{n}\right)^2.$$

Since $P_{R,S}(X) \leq \prod_{i=1}^m S_2(x_{i1}, \dots, x_{in})$,

$$\begin{split} \mathbf{P}_{R,S}(X) & \leq \left[\binom{n}{2} \left(\frac{2}{n} \right)^2 \right]^m \\ & = \left[n(n-1) \left(\frac{2}{n^2} \right) \right]^m \\ & = \left(2 - \frac{2}{n} \right)^m. \end{split}$$

LEMMA 6. For integer $n \geq 2$,

$$(2.4) \frac{n!}{n^n} \le \left(\frac{1}{2}\right)^{\frac{n}{2}}$$

with equality holds for n = 2.

Proof. By induction on n, if n=2 then equality holds. If n=3, then $\frac{3!}{3^3}=\frac{2}{9}<\left(\frac{1}{2}\right)^{\frac{3}{2}}$. Assume true for n-1, and consider n. That is,

$$\frac{(n-1)!}{(n-1)^{n-1}} \le \left(\frac{1}{2}\right)^{\frac{n-1}{2}}$$

$$\iff \frac{(n-1)!}{(n-1)^{n-1}} \frac{1}{n^{n-1}} \le \left(\frac{1}{2}\right)^{\frac{n-1}{2}} \frac{1}{n^{n-1}}$$

$$\iff \frac{n!}{n^n} \frac{1}{(n-1)^{n-1}} \le \left(\frac{1}{2}\right)^{\frac{n-1}{2}} \frac{1}{n^{n-1}}$$

$$\iff \frac{n!}{n^n} \le \left(\frac{1}{2}\right)^{\frac{n-1}{2}} \frac{(n-1)^{n-1}}{n^{n-1}}$$

$$= \left(\frac{1}{2}\right)^{\frac{n-1}{2}} \left(\frac{n-1}{n}\right)^{n-1}.$$

 $2 \le (1 + \frac{1}{n-1})^{n-1}$ for $n \ge 2$, since $\left(1 + \frac{1}{n}\right)^n$ is an increasing function, $\left(1 + \frac{1}{n}\right)^n = 2$ for n = 1 and $2 < \left(1 + \frac{1}{n}\right)^n$ for $n \ge 2$. So, $\left(\frac{n}{n-1}\right)^{n-1} \le \frac{1}{2}$. Hence,

$$\frac{n!}{n^n} \le \left(\frac{1}{2}\right)^{\frac{n-1}{2}} \frac{1}{2} < \left(\frac{1}{2}\right)^{\frac{n}{2}}.$$

Therefore, $\frac{n!}{n^n} \leq \left(\frac{1}{2}\right)^{\frac{n}{2}}$ for integer $n \geq 2$.

By the above lemma,

$$\left(\frac{n!}{n^n}\right)^2 \le \left(\frac{1}{2}\right)^n \iff (n!)^2 \le \left(\frac{n^2}{2}\right)^n$$

$$\iff (n!)^{\frac{2}{n}} \le \frac{n^2}{2}$$

$$\iff \frac{2}{n} \le \frac{n}{(n!)^{\frac{2}{n}}}$$

$$\iff \frac{2(n-1)}{n} \le \frac{n(n-1)}{(n!)^{\frac{2}{n}}}$$

$$\iff 2 - \frac{2}{n} \le \frac{n(n-1)}{(n!)^{\frac{2}{n}}}$$

$$\iff \left(2 - \frac{2}{n}\right)^m \le \left(\frac{n(n-1)}{(n!)^{\frac{2}{n}}}\right)^m = \frac{(n!)^{m-\frac{2m}{n}}}{(n-2)!^m}.$$

$$(2.5)$$

Note that the right term in (2.5) is the upper bound when $R = 2E_m$ by the Theorem 2.1 [2]. Thus, in this case, the upper bound in (2.3) sharper than that of Theorem 2.1 [2].

Acknowledgements. The author wish to thank the referee for a thorough and careful reading of the original draft.

References

- 1. R. A. Brualdi, D. J. Hartfiel and S. G. Hwang, On assignment functions, Linear and Multilinear Algebra 19 (1986), 203-219.
- 2. G. Y. Lee, Some bounds for assignments, Bull. Korean Math. Soc. 31 (1994), 71-81.
- 3. A. W. Marshall, Inequalities: Theory of Majorization and Applications, Academic Press, New York, 1979.

Department of Mathematics Hanseo University Seosan 352-820, Korea