DECOMPOSITIONS OF IDEALS IN BCI-ALGEBRAS

SHI MING WEI AND YOUNG BAE JUN

In 1966, Iséki [4] introduced the notion of BCI-algebras which is a generalization of BCK-algebras. The ideal theory plays an important role in studying BCK/BCI-algebras.

In this paper we study decompositions of ideals in BCI-algebras, and give a characterization of closed ideals. Also we define ignorable ideals in BCI-algebras, and investigates its properties.

Let us review some definitions and results.

By a BCI-algebra we mean a nonempty set X with a binary operation * and a constant 0 satisfying the following conditions:

BCI-1
$$((x * y) * (x * z)) * (z * y) = 0$$
,

BCI-2
$$(x * (x * y)) * y = 0$$
,

BCI-3
$$x * x = 0$$
,

BCI-4
$$x * y = 0$$
 and $y * x = 0$ imply $x = y$,

for all $x, y, z \in X$.

A nonempty subset A of a BCI-algebra X is said to be a subalgebra if $x \in A$ and $y \in A$ imply $x * y \in A$.

An ideal of a BCI-algebra X is a subset I containing 0 such that if $x * y \in I$ and $y \in I$ then $x \in I$. It is a closed ideal of X if whenever $x \in I$ then so does 0 * x.

We note that every closed ideal is a subalgebra ([3]).

In a BCI-algebra X, the following identities hold:

- (1) x * 0 = x.
- (2) (x * y) * z = (x * z) * y.
- (3) 0*(x*y) = (0*x)*(0*y).

For any BCI-algebra X and $x, y \in X$, denote

$$A(x,y) = \{ z \in X | (z * x) * y = 0 \}.$$

THEOREM 1. If I is an ideal of a BCI-algebra X, then

$$I = \bigcup_{x,y \in I} A(x,y).$$

Proof. Let I be an ideal of a BCI-algebra X. If $z \in I$ then since (z*0)*z = (z*z)*0 = 0*0 = 0, we have $z \in A(0,z)$. Hence

$$I \subseteq \bigcup_{z \in I} A(0, z) \subseteq \bigcup_{x, y \in I} A(x, y).$$

Let $z\in \underset{x,y\in I}{\cup}A(x,y)$. Then there exist $a,b\in I$ such that $z\in A(a,b)$, so that (z*a)*b=0. Since I is an ideal, it follows that $z\in I$. Thus $\underset{x,y\in I}{\cup}A(x,y)\subseteq I$, and consequently $I=\underset{x,y\in I}{\cup}A(x,y)$.

COROLLARY 2. If I is an ideal of a BCI-algebra X, then

$$I = \bigcup_{x \in I} A(0, x).$$

Proof. By Theorem 1 we have that $\bigcup_{x\in I} A(0,x) \subseteq \bigcup_{x,y\in I} A(x,y) = I$. If $x\in I$ then $x\in A(0,x)$ because (x*0)*x=0. Hence $I\subseteq \bigcup_{x\in I} A(0,x)$. This completes the proof.

THEOREM 3. Let I be a subset of a BCI-algebra X such that $0 \in I$ and $I = \bigcup_{x,y \in I} A(x,y)$. Then I is an ideal of X.

Proof. Let $x*y,y\in I=\underset{x,y\in I}{\cup}A(x,y)$. It follows from BCI-2 that $x\in A(x*y,y)\subseteq I$. Hence I is an ideal of X.

Combining Theorems 1 and 3, we have the following corollary.

COROLLARY 4. Let X be a BCI-algebra and I a subset of X containing 0. Then I is an ideal of X if and only if $I = \bigcup_{x,y \in I} A(x,y)$.

Now we give a characterization of closed ideals.

THEOREM 5. Let I be a subset of a BCI-algebra X. Then I is a closed ideal of X if and only if it satisfies

- (i) $0 \in I$,
- (ii) $x * z \in I$, $y * z \in I$ and $z \in I$ imply $x * y \in I$.

Proof. Let I be a closed ideal of X. Clearly $0 \in I$. Assume that $x * z, y * z, z \in I$. Since I is an ideal, therefore $x, y \in I$, which implies that $x * y \in I$ because I is a closed ideal and hence a subalgebra.

Conversely assume that I satisfies (i) and (ii). Let $x*y,y\in I$. Since $0*0,y*0,0\in I$, by (ii) we have $0*y\in I$. From (ii) again it follows that $x=x*0\in I$, so that I is an ideal of X. Now suppose $x\in I$. Noticing that $0*0,x*0,0\in I$; then $0*x\in I$ follows from (ii). This completes the proof.

THEOREM 6. Let I be an ideal of a BCI-algebra X. The set

$$I^0 = \{ x \in I \, | \, 0 * x \in I \}$$

is the greatest closed ideal of X which is contained in I.

Proof. First we show that I^0 is an ideal of X. Clearly $0 \in I^0$. For any $x, y \in X$, if $x * y, y \in I^0$, then $0 * y \in I$ and

$$(0*x)*(0*y) = 0*(x*y) \in I.$$

Since I is an ideal of X, it follows that $0*x \in I$. Moreover since $I^0 \subseteq I$, therefore $x*y,y \in I^0 \subseteq I$ implies $x \in I$. Hence $x \in I^0$, and so I^0 is an ideal of X. If $x \in I^0$, then $0*x \in I$. Since (0*(0*x))*x = 0, it follows that $0*(0*x) \in I$. Hence $0*x \in I^0$, which proves that I^0 is closed. Now assume that A is a closed ideal of X which is contained in I. Let $x \in A$. Then $0*x \in A$. Since A is contained in I, therefore $x, 0*x \in I$, and so $x \in I^0$. Thus $A \subseteq I^0$. Therefore I^0 is the greatest closed ideal which is contained in I.

DEFINITION 7. An ideal I of a BCI-algebra X is called an ignorable ideal of X if $I^0 = \{0\}$.

THEOREM 8. Let I be an ideal of a BCI-algebra X. Then $I^g = (I - I^0) \cup \{0\}$ is an ignorable ideal of X.

Proof. Let $x, y \in X$ be such that $x * y \in I^g$ and $y \in I^g$. If y = 0 then $x = x * 0 \in I^g$. Assume that $y \neq 0$. Clearly $x * y, y \in I$, which implies that $x \in I$. If $x \in I^0 - \{0\}$, then $x \neq 0$ and $0 * x \in I$. Since $y \neq 0$, it follows from $y \in I^g$ that $y \in I - I^0$, so that $0 * y \notin I$. On the other hand since ((0 * y) * (0 * x)) * (x * y) = 0 and since $x * y \in I$, we have that $(0 * y) * (0 * x) \in I$, so that $0 * y \in I$. This is a contradiction. Hence $x \notin I^0 - \{0\}$, i.e., $x \in I^g$. This proves that I^g is an ideal of X. Now we show that $(I^g)^0 = \{0\}$. If $x \in (I^g)^0$, then $x \in I^g$ and $0 * x \in I^g$. From $x \in I^g$ it follows that x = 0 or $x \in I - I^0$. If $x \in I - I^0$ then $0 * x \notin I$, which is a contradiction. Thus x = 0. This completes the proof.

The following corollary is obvious.

COROLLARY 9. Let I be an ideal of a BCI-algebra X. Then

$$I^0 \cup I^g = I \text{ and } I^0 \cap I^g = \{0\}.$$

References

- Z. M. Chen and H. X. Wang, On ideals in BCI-algebras, Math. Japon. 36 (1991), 497-501.
- C. S. Hoo, Closed ideals and p-semisimple BCI-algebras, Math. Japon. 35 (1990), 1103-1112.
- C. S. Hoo and P. V. Ramana Murty, Quasi-commutative p-semisimple BCI algebras, Math. Japon. 32 (1987), 889-894.
- 4. K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29.
- K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351-366.

Institute of Mathematics Huaibei Coal Mining Teacher's College Huaibei 235000, P. R. China

Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea Fax: To Prof. Y. B. Jun, 82-591-751-6117