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NORMAL BCI/BCK-ALGEBRAS

JIE MENG, SHI MING WEI AND YOUNG BAE JUN

In 1966, Iséki [2] introduced the notion of BCI-algebras which is a gen-
eralization of BCK-algebras. Lei and Xi [3] discussed a new class of BCI-
algebra, which is called a p-semisimple BCl-algebra. For p-semisimple
BCl-algebras, a subalgebra is an ideal. But a subalgebra of an arbitrary
BCI/BCK-algebra is not necessarily an ideal.

In this note, a BCI/BCK-algebra that every subalgebra is an ideal
is called a normal BCI/BCK-algebra, and we give characterizations of
normal BCI/BCK-algebras. Moreover we give a positive answer to the
problem which is posed in [4].

Let us review some definitions and results.

By a BCl-algebra we mean an abstract algebra (X;=*,0) of type
(2,0) satisfying the following conditions:

BCI-1 ((z*y) *x(z*2))*(zxy) =0,

BCI-2 (zx(zxy))*y =0,

BCI-3 zxz =0,

BCl4z+xy=0and y*xz =0imply z = y,
for all z,y,2 € X.

A BCl-algebra X satisfying

BCK-50%xz =0forallz e X
is said to be a BCK-algebra.

In a BCI/BCK-algebra X we can define a partial ordering < by
putting z < y if and only if z *y = 0.

A nonempty subset A of a BCI/BCK-algebra X is said to be a sub-
algebra if it satisfies

(i) e Aand y € A imply z xy € A.

A subset I of a BCI/BCK-algebra X is said to be an ideal if it satisfies
(ii) 0 e I,

(iii) c*xy€ I and y € I imply z € I.

An ideal I of a BCl-algebra X is said to be closed if it satisfies
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(iv) z € I implies 0z € I.
In a BCl-algebra X, the following identities hold:
(1) zx0=z.
(2) (zxy)*xz=(z*x2)xy.
(3) 0 (2 4y) = (0% 2)  (0+y)
(4) zx(zx(z*xy)) =z *y.
A BCl-algebra X is said to be p-semisimple if X, = {0}, where
X4 ={z € X : 0%z = 0} which is called the BCK-part of X.
Let X be a BCl-algebra. An element a of X is said to be an atom if
z *a = 0 implies = = a for every z € X. Denote the set of all atoms of
X by L(X). For all a € L(X), V(a) = {zr € X : a < z} is said to be a
branch of X. Clearly V(0) = X,.

ProposITION 1 ([5]). Let X be a BCIl-algebra and let a,b € L(X).
Then
(5) r€ L(X) ifand only ifz =y * (yxx) forall y € X.
(6) axz € L(X) for all z € X.
(7) zxy€eV(axb) forz € V(a) and y € V()).
(8) L(X) is a p-semisimple BCI-algebra.
(9) X is p-semisimple if and only if X = L(X).
Let A be a nonempty subset of a BCI-algebra X. Denote {z € A :
z=0x*(0xz)} by L(A). Obviously L(A) = AN L(X).
PROPOSITION 2. Let A be a subalgebra of a BCI-algebra X. Then
L(A) is a closed ideal of L(X).

Proof. The proof is easy, and we omit the proof.

ProposITION 3 ([1]). Let I be a subset of a p-semisimple BCI-
algebra X. Then I is a closed ideal if and only if I is a subalgebra.

A BCl-algebra X is said to be a KL-product BCI-algebra([6]) if there
exist a BCK-algebra Y and a p-semisimple BCl-algebra Z such that
X=2Y x Z.

PROPOSITION 4 ([6]). Let X be a BCI-algebra. Then the following
are equivalent:

(10) X is of KL-product.

(11) L(X) is an ideal of X.

(12) X =2 X, x L(X).
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PROPOSITION 5 ([4]). Let X be a BCI-algebra. Then the following
are equivalent:

(10) X is of KL-product.

(13) z =(z*a)*(0*a) for z € X and a € L(X).

(14) (z*a)*(y*xb)=(z *y) *x (axb) for z,y € X and a,b € L(X).

DEFINITION 6. A BCI/BCK-algebra X is said to be normal if every
subalgebra of X is an ideal.

EXAMPLE 7. (a) Every p-semisimple BClI-algebra is normal.

(b) If every nonzero element in a BCK-algebra X is an atom, then X
is a normal BCK-algebra.

(c) If a BClI-algebra X is the direct product of X and L( ), and if

every nonzero element of X is an atom, then X is a normal BCI-algebra.
The following proposition is obvious.

PRrRoOPOSITION 8. Let X be a normal BCIl-algebra. Then every sub-

algebra of X is a normal BCl-algebra. Particularly, X is a normal
BCK-algebra.

THEOREM 9. A BCK-algebra X is normal if and only if it satisfies
(15) z*y ==z forz # y.

Proof. Suppose that X is a normal nontrivial BCK-algebra. Then for
all z € X, {0,z} is an ideal of X, as {0,z} is a subalgebra of X. Let
z,y € X be such that z # y. Since z *y < z, we have that z*xy € {0,z}.
Hence z*y=0orz*xy=z. If z*y = 0, then z < y. It follows that
z € {0,y} so that z = 0. Thus X satisfies (15).

Conversely suppose that X satisfies (15). Let A be an arbitrary sub-
algebra of X. Let z xy,y € A. If z # y, then £ = z * y by (15). Hence
xz € A. If £ = y then clearly z € A. Thus A is an ideal of X. This

completes the proof.

THEOREM 10. A BCl-algebra X is normal if and only if X is of KL-
product and X, satisfies the condition (15).

Proof. Suppose that X is a normal BCl-algebra. Then L(X) is an
ideal of X, as L(X) is a subalgebra of X. It follows from Proposition
4 that X is of KL-product. By Proposition 8 and Theorem 9, we have
that X satisfies (15).
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Conversely assume that X is of KL-product and X, satisfies (15).
Let A be an arbitrary subalgebra of X. We know by Proposition 2 that
L(A) is a closed ideal of L(X). Now let z *y,y € A. Then we have that
Oxy€ Aand (0*x2)*(0*y) = 0*(z*y) € A. By means of (4), we
conclude that 0 *y,(0*z) * (0*y) € L(A). Thus 0xz € L(A) C A. If
z*(0x(0xz)) =y (0% (0+y)), then by (4) and (13)

z=(z+(0%(0%2)))*(0xz)=(y*(0%(0xy)))*(0xz) € A
Ifz*(0*(0*z))#yx*(0x(0x*y)), then by (4), (13), (14) and (15)

= (z*(0*(0*x)))*(0*z)
=((z* (0% (0%2)))*(y*(0%(0*y))))*(0*z)
=((z*xy)*(0x(0*x(z*y))))*(0*z) € A.
Therefore A is an ideal of X, and hence X is normal. The proof is

complete.

COROLLARY 11. Let X be a BCl-algebra. Then X is normal if and
only if X 2 X, x L(X) and X is a normal BCK-algebra.

We recall that a mapping f : X — Y of BCl-algebras is called a
homomorphism if f(z *y) = f(z)* f(y) for all z,y € X.

DEFINITION 12 ([4]). Let X be a BCl-algebra. The mapping p :
X — X is defined by putting p(z) = z xa for all z € X, where a =
0+(0*z) € L(X), that is, p(z) = z * (0 % (0 x z)).

PROPOSITION 13. Let X be a BCIl-algebra. Then ¢ € L(X) if and
only if p(z) = 0.

Proof. Let z € L(X). Then 0% (0*z) = z. Hence
p(z)=z*(0*(0*z)) =0.

Conversely assume that p(z) = 0, ie., £ * (0% (0 * z)) = 0. Then
£ < 0% (0*z). Combining BCI-2, we know that 2 = 0 * (0 * z). Hence
z € L(X). This completes the proof.

Combining Proposition 13 and [5; Theorem 1], we have the following
corollary.
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COROLLARY 14. Let X be a BCl-algebra. Then for all z,y,u,z of
the following conditions are equivalent:
(a) p(z) =0.

(b) z=z%(zxz).

(c) (z*u)*(zxz) =2z *u.

(d) zx(zxy) <yx(zxz)

(e) (zxu)*(zxy) < (y*xu)*(zx*z).
(f) (0xz)*(0*z)=x*z.

(g) 0% (0*z) ==z

(h) 0% (z%z) ==z *z.

(i) 0x(0x(z*xz))==x*2z.

(j) zx(z*(z*u)) =z *u.

THEOREM 15. Let X be a BCl-algebra. If p is an endomorphism on

X, then X is a KL-product BCI-algebra.

Proof. Suppose that p is an endomorphism on X. Let z*y,y € L(X).

Then by (1) and Proposition 13, we have

p(z) = p(z) * 0 = p(z) * p(y) = p(z *y) = 0.

It follows from Proposition 13 that # € L(X), so that L(X) is an ideal
of X. Proposition 4 assures us that X is a KL-product BCI-algebra.
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