Journal of the Korean Nuclear Society
Volume 26, Number 4, December 1994

Analytical Solutions for a Three-Member Decay
Chain of Radionuclides Transport in a Single
Fractured Porous Rock

Young Woo Yu and Chang Hyun Chung
Seoul National University
Chang Lak Kim
Korea Atomic Energy Reaserch Institute
{Received October 22, 1992)

RHAFD HEA A BAL AT F ol
e 3R] $3) A2 4

RYS - yuY
Mg g
uzrey
#PAdd T4
(1992. 10. 22 A <)

Abstract

The migration equation is modified for a three-member decay chain in the fracture and porous
matrix. Analytical solutions are obtained by utilizing Laplace transform the initial conditions of Delta
function and Bateman equation.

The concentrations for each nuclide of Np?’-U%-Th?® and U?-Th**-Ra? chains selected
from the 4n+1 and 4n+ 2 chains are plotted by utilizing analytical solutions in the fracture. Retar-
dation coefficients of the nuclides are obtained using those of the granite.

The results indicate that the daughter nuclides such as U, Th*®, Th** and Ra** become im-
portant at the far field from the repository though there is very small initial inventory in the waste
solid or spent fuel, for they are produced by the mother nuclides decayed in the fracture and po-
rous matrix.
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1. Introduction

Most of radioactive wastes generated from nuclear
power plants will remain radioactive for a very long
time. The dense geological formations of radioactive
waste repository are especially important for confin-
ing relatively long half-life nuclides. As radionuclides
dissolve in groundwater among the dense geological
formation effects, it is essential in predicting the
safety of the geological disposal system to under-
stand how radionuclides are transported into and
through geological layser.”

The prime requirements for rock matrix of the
waste repository are low permeability and porosity. In
fractured porous media, all of the groundwater flow
occur within the fractures because fractures have
permeabilities of several orders of magnitude larger
than those of the rock matrix, if the geological layers
are fully saturated with water. So radionuclides
dissolved in groundwater will be transported along a
fracture with molecular diffusion from the fracture to
the rock matrix.?

Molecular diffusion from the fractures into the po-
rous matrix constitutes an attenuation mechanism
that can be highly effective in removing contaminant
mass from the primary flow channels and thus in
retarding the advance of contaminant in the system.
In the case of a radioactive contaminant having a
constant source strength, the advance will eventually
cease if the flow is sufficiently long. The distribution
of the contaminant in the system will be stable if the
effect of the daugthers generated by the parent
species is neglectd due to the loss by decay of mass
stored in both the fractures. And the porous matrix
will balance the mass input at the source and that

due to decay of parent species.

In practice radioactive wastes have multi-decay
chains, the daughter nuclides produced by the
mother nuclide will be increased along the fracture
though there is very small initial inventory in the
waste solid or spent fuel. Neglecting radioactive-de-
cay precursors affects in two ways. First, total amount
of a daughter radionuclide in the source and in the
medium would be underestimated which results in
underestimation of maximum concentration. Second,
if the mother nuclide is transported faster, the
daughter nuclides would exist in a extended region
than expected because the daughter is generated by
the mother nuclide decayed in the fracture and in
the porous matrix

Analytical solutions for the transport of a two-
member decay chain have been developed by
Sudicky and Frind® for one-dimensional transport
along a single at a porous rock matrix. Joonhong
Ahn" obtained analtical solutions for a two member
decay chain as Green’s functions for the boundary
conditions prescribed by an arbitrary function of time.
Actinides chains in high level wastes practically have
more than two members and cannot be treated by
the method above. Since some elements have very
short half lives while some others long half-lives,
these chains can be broken into shorter chains.®

U?* from the 4n+2 chain in spent fuel has de-
cayed significantly, the contributions of Th®® and
Ra®® comes from Am?%, and all remaining nuclides
of the cases treated in this work are in secular equi-
librium with Ra®®. On the other hand, there is a
large amount of Pu?. For practical purpose, the
quantity of nuclides chain which is beginned with de-
cay of Pu®! to form Am?*"! and Np® is not a little. If
waste dissolution begins hundreds of years or more
after emplacement, the 4n+1 chain can be reduced
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to the following chain: Np®”-U?3-Th?® where the in-
itial amount of Np*™ should include the decay of
Pu? and Am?*, because the half lives of Pu?*! and
Am?! are shorter. Therefore, Np®7-U*-Th?®° and
U?*.Th?-Ra®*¢ chains are selected among the same
sequence, the four distinct complete actinide chains
present in high level wastes can be broken into the
three-member decay chains.

Matrix diffusion and chemical sorption of multi-de-
cay chains will be predicted indirectly through the
analytical solutions for a three-member decay chain.
This paper solves migration equations of a three-
member decay chain for one-dimensional transport
through a single fracture. The analytical solutions are
obtained by analytical inversion of Laplace transform,
the numerical calculation of the analytical solutions is
utilized by the trapezoid method because the analyti-
cal solution forms are expressed in the integral

forms.

2. Theory

2.1. Assumptions

In order to permit one dimensional analysis of
transport along the fracture for one dimensional
molecular diffusion of radionuclides from the fracture
to the porous matrix, we will
assumptions pertaining to the geometric and hy-
draulic properties of the swystem 24 hand;These
assumptions are;the width of the fracture is much
smaller than its length;transport in the porous rock
matrix is controlled by molecular diffusion because
the intack rock has low hydraulic conductivity; trans-
port along the fracture by advection is much more
rapid than transport in the rock matrix; longitudinal

make several

dispersion in a fracture is neglected;a groundwater
velocity along the fracture is constant.?

2.2. The Physical Process

Consider a porous matrix containing one
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Fig. 1. Geometry and Physical Processes Considered in
the Model With a one Dimensional Single Frac-
ture.

dimensional single fracture of width 2b, situated in a
water -saturated porous rock of porosity ¢.{See Figure
1)

The transport of radioactive contaminants in the
fracture and porous rock matrix will be formulated
with consideration given to the following process:a)
Advective fransport at a constant groundwater vel-
ocity along the fracture. b) Molecular diffusion from
the fracture to the porous matrix c) Sorption onto
the fracture surfaces. d) Sorption within the porous
rock matrix e) Radioactive decay with 3 member
precursors in the fracture and porous rock matrix
with decay constant 1.2

2.3. Governing equations

The transport of each member of 3-member de-
cay chain can be described by three coupled one
dimensional equations on the basis of the above
assumptions ; one set for the fracture and one set for
the porous rock matrix.

The coupling here is provided by the continuty of
concentration along the fracture-matrix interface.
Longitudinal dispersion in a fracture is neglected.

1) Goveming equatons for one dimensional trans-
port at a fracture:
aNy aNi

+ V
at a4z

Ret

q1
+ ARegNy + 5 =0



(z>0, t>0)(21)

3Nz aNz
+ V— + A2Rf2N2
a2z

Rf2

- ARegNp + q: =0

(z>0, t>0) (29

aNs aN3
Regg —— ¢+ V. — + A3Re3Ns
at 9z

q3
= X2Rf2Nz + T =0

(z>0, t>0)23)

N:: Concentration in a fracture
2) Goveming equatons for one dimensional trans-
port at a porous matrix:

My M,
Rpt — - Dpi + MRpiMp = 0
at ay?
{(y>b, z2>0, t>0)24)
Mz My
Rp2 — - Dp2 + Az2RpzMz - AqRpiM; = 0
at ay?
(y>b, 2>0, t>0)(25)
aMs 32M3
Rp3 == - Dp3 — + A3RpaM3 - A2RpaMz = 0
at ay

(y>b, z>0, t>0)26)

Ni: Concentration in a porous matrix
Subscripts 1, 2, 3 in the above equations stand for
mother and daughter muclides, respectively.
3) alz, ) are defined as:
aMi

qi(z,t) = - eDpi —
ay lysb

(z>0, t>0) i=1,2,3 (27
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The loss term q in the fracture equations
represents the diffusive flux crossing the fracture-
matrix boundary.
where
€: porosity
(t : tortuosity of the rock matrix
Di:free solution molecular diffusion co-

efficient)

Dp' =D

Dy :molecular diffussion coefficient in
the porous rock matrix

Ri=1+ -I—f;— :retardation coefficient in the fracture

Ri=1+ % (K,); : retardation coefficient in the po-
rous matrix

Ks:sorption distribution coefficient in
the fracture (L)

K;i:sorption distribution coefficient in
the porous rock matrix (L3/M)

po:bulk density of the porous matrix
M

=102 :decay constant
(h/z) i

4) Side conditions

N; of the following conditions are imposed on the
system of equations describing transport in the frac-
ture. M, of the following conditions are imposed on
the system of equations describing transport in the
porous rock matrix. Ni(0, t) condition is expressed in
the form of Delta function and Bateman equation. N:
(z, ) =M(b, z t) condition is interface condition of
surface of fracture-porous rock matrix.

Ni(z,0) = 0 (z > 0) (2.8)
Mi(y.z,0) = 0 (y > b, z>0)29
Ni(0,t) = ¥i(t) (t>0) (2.10)
Ni(=,t) = 0 (t>0) (2.11)



Analytical Solutions for a Three-Member Decay Chain of Radionuclides--- YW. Yu, et al 457

Ni{z.t) = Mi(b,z,t) (2> 0, t>0) (212
Mi(=,2,t) =0 (z>0, t>0) (213)
i=1,2,3

3. Solutions and Results
3.1. Solutions

The solutions are obtained from two initial
conditions of Delta function and Bateman equation.
The case 1 represents solutions from the initial con-
dition of Delta function. The case 2 represents
solutions from the initial condition of Bateman
equation with band theory. Physical meaning of the
case 1 is the concentration of the radionuclide that is
deposited instantaneously at the coordinate origin of
the fracture.? Physical meaning of the case 2 is the
concentration of the radionuclide that is deposited
continuously with radionuclides decayed from the
source during the leach time.”

The Laplace transform method is utilized to solve
equations for the fracture and the porous rock matrix
with their respective boundary and initial conditions.
The paper omits to process in detail the solving pro-
cedure and represents only solution parameter. Solv-
ing procedure is given as follows: 1) Laplace trans-
form the equation which describes diffusive transport
of the first member of the decay chain in the porous
matrix 2) Solve diffusive transport of the first mem-
ber of the decay in porous matrix with Laplace
boundary conditions. 3) The
transformed concentration gradient at the interface
y=b is easily obtained by differentiation of the first
member transformed solution of the decay chain in

transformed

the porous matrix 4) Laplace transform the equation
which describes the transport of the first member of
the decay chain in the fracture. 5) Solve transport of
the first member of thedecay chain in the fracture
with the transformed interface gradient and boundary

conditions in the fracture® 6) Repeat the procedure
from 1) to 5) with two and three member decay
chain. 7) Inverse Laplase transformed solutions.®

Only here, the solution for the case 2 is
represented. As for the case 1, refer to the original
work.”

The Wi(t) are obtained form the Bateman equation
with the band release fora 3-member decay chain as
follow:

W1 (t) = Nyoexp(-A1t) {h(t)-h(t-T)¢,

Yra(t) = [Nfexp(-z\zt)

Nio Ay

+(—Xz—-—;\_;)[ exp(-At)-exp(-Azt)]

{h{t)-h(t-T)},

Nze A
Y3(t) = [Ns°exp(-z\3t)+(-}-\-:_—/\-;-)[exp(

~Azt)—exp(-/\3t)]+N‘l’K1 A2 [

[ exp(-A1t) X exp(-Aat)
(Az-A 1) A3-A1)  (R2-A1)(A3-A1)

X exp(-Ast) ]
(A1-A3)(Az-A3))

] {h(t)-h(t-T)},

where N? is the concentration of the ith radio-
nuclide that is deposited instananeously at the coor-
dinate origin of the fracture.

Analytical solution from the initial condition of
Bateman equation can be expressed by applying the
convolution theorem with respect to time as follow:

Ni{(z, t) = J:‘W';(t-t‘) Vi(b,z, z)dT

(220, tz0) (3.1)

Mi(y.z, t) = J:‘\Vx(t-t‘)wx(y.Z. rv)dT



(y=b, z20, t20) (3.2

N2(y.z, t) = Izvn(t-r) Uiz(b,z, z)dz
+ Ith(t-r)Wz(b,z, T)dz
]
(z20, t20)(3.3)
t
Ma(3.2,t) = [ Witz Ra(b,2, 7)

+ Xi(y,z, T)dT

t
+ J Vi(t-7) Va2(y,z, T)dT
o]

(yzb, 220, t20)(34)

N3(z,t) = J:Wl(t-t){Kl(b,z. z)
+ K2(b,z, z)} dT
t
+JOW2(t-r YUz3(b,z, z)dz

+ J:'\Ir;;(t-z:) Vi(b,z, T)dT

(220, t20) (35)

t
M3(y,z, t) = L‘h(t-r){Kx(y.z. T)
+ Koy, 2, z) + Xaly,z. 7)
+ Xs(y.2, z)MdT + J:“Vz(t-t)Uzs(Y.z. )T

I: Ya(t-7) Wi(y,z, z)dze

(yzb, z20, t20) (3.6)
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3.2. Results

The numerical calculation of the analytical
solutions is performed through the trapezoid metho-
d” The integral ranges with the given time are
subdivided into about 2,000,000 intervals near field
from the source, for the values of the given solutions
change very sensitively at near field from the source.
And the integral ranges are subdivided into about
100,000 far field from the source. The leach time is
30,000yr. The retardation coefficients of each
nuclides selected are taken from those of the granite.
The results of numerical calculation are only
represented forth case 2 in the fracture.

In Figure 2, profiles of concentration in the frac-
ture for a chain, Np?-UP-Th?®, at 10,000yr and
50,000 yr with Rpes7 =100, Rpes=50 and Rpez =5,
000 are plotted, where the leach time 30,000y in
the fracture is considered in the latter calculation.
The concentrations for U? over 2,000m at 10,000 yr
and over 6,000m at 50,000 yr are greater than those
of the mother nuclide, for retardation coefficient of
the daugther is less than that of the mother. The
concentrations for Th?® over 200m at 10,000 yr and
over 400m at 50,000 yr are greater decayed ones in
the fracture than in the repository.

Also, profiles of concentration in the fracture for a
chain, U?*-Th#®.Ra”, at 10,000y and 50,000yr
{leach time 30,000 yr) with Ryzss =50, Rpzes =500 are
plotted in the figure 3.

4. Discussions and Conclusions

The solutions for a 2-member decay chain
contained several incorrect expressions. That method
was able to express correct analytical solutions for a
2-member decay chain. The solution forms were not
expressed as an Eror function because of con-
venience for integral numerical calculation. Although
the analytical solution was currently restricted to a 3-
member decay chain, it could predict indirectly for
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Fig. 2. Concentration Profiles of a Np®”-U?®.Th**
Chain From the Initial Condition of Bateman
Equation in the Fracture.

(2b=0.01m, v=10m/yr, =001, Nl37=1,
N%33=N%2=0, Res;=Ress=Res=1, Rp23:=100,
Ry250=50, Roz29=5,000 Dyz35=Dy220=0.01m?/yr)

matrix diffusion and chemical sorption for multiple
decay chain. In practice a numerical model for a
three-member decay chain may suit better than a
analytical model because the solutions of the latter
for a three-member decay chain are expressed as
multiple integral forms. But the physical meaning for
matrix diffusion and chemical sorption during
through a single fracture can be easily understood by
the analysis of each physical term from the analtical
solutions for a 3-member decay chain.
Np®".U.Th® and UZ*.Th®"-Ra’® chain are
selected among the multiple decay in the radioactive
waste because Np?’ and U hawe a considerable in-

itial inventory in the waste solid or in the spent fuels.

10,C00 yr
u-234
M 10 "'!
~ 2
~ 3 Th-230
i 10y
1 Ra-226
~ 10"y
Z 3
~ .3
C'.Q"'
2
z ‘0"“ T T T T YT v v v
1 10 10° 10°? 10

Distance along fracture, z, m

£0,CC0 yr

T30, Wy

3
1
lo"_’
B B S 1 e s i B 2 e o B 12 MR S AR

L 10 107 10’ 10
Distance along fracture, z. m

Fig. 3. Concentration Profiles of a U?*-Th?"-Ra™*

Chain From the Initial Condition of Bateman
Equation in the Fracture.
(2b=0.01m, v=10m/ywr, ¢=0.01, Nou=1,
N%30=N%2%=0, Res;=Re3=Res=1, Rpz4=50,
Rp20=5,000, Ry220=500 D;234=Dp230=Dp226==0.
Olmz/yr)

The examples show that a daughter product will ad-
vance further along the fracture than its mother
species of greater retardation factor though the half
lives of the daughter are shorter. The concetration of
radionuclides such as Th®® and Ra®® are greater
than-those of the mother at far field from the source
though there is very small initial inventory in the
waste solid or spent fuels.

The concentratons- for a 3-member decay chain
are compared with those of exact solution of ap-
proximation by neglecting radioactive decay
[chamber, 1979] in the rock matrix. If the retardation
factor of the mother is smaller than that of the
daughter, the approximation will be incorrect. Be-
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cause a precursor which decays to the daughter in
the rock matrix is transported fast, the diffusion flux
of the daughter at the surface in the rock matrix
becomes smaller than that of radioactive decay in the
rock matrix But though the retardation factor of the
mother is greater than that of the daughter, the ap-
proximation will be correct because the concentration
of a precursor to decay to the daughter in the rock
matrix is small.

The concentrations along the porous matrix de-
crease faster than those along the fracture. If the re-
tardation factors of nuclides for a porous matrix are
small, the variation of concentration along the po-
rous matrix will become as important as those along
the fracture.
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