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A Study on Variation Stack-up Analysis using a
Monte Carlo Simulation Method
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1. Introduction

One of many problems that the manufacturing industry today is faced with is specification of
proper dimensional tolerances on individual components of assembled products so that the
performance requirements of the assembled product can be satisfied. Figure 1.1 is a typical
example of relationships between dimensional tolerances of each component and manufacturing cost,
and between the dimensional tolerances and the performance of an assembled product. It
demonstrates that tight tolerances can lead to an expensive product, while loose tolerances may lead
to a product with poor performance. Improper tolerance specification may also result in assembly
problems and increased waste. Thus, design engineers have increased pressure to specify proper
tolerances for manufacturing and assembly efficiency as well as performance requirements.
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Figure 1.1 A typical example of tolerances-manufacturing cost and tolerances-product

performance relationships.
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At the design stage, engineers set the specification of each dimensional characteristic X by
determining its nominal value N and tolerance 7. The specification of ith dimensional
characteristic can be expressed as: X;= N,;= T, The nominal of each dimensional characteristic is

a target value toward which the operator aims. However, in the real situation, the mean value of
the dimensional characteristic may not be the same as its target value because of process mean
shifts due to random factors existing in the manufacturing system such as: (1) different materials,
people, and machines having worked on the component; (2) tool wear and tool setup errors of the
machines; and (3) environmental changes.

The tolerance of each dimensional characteristic is usually given as a range within which the
dimension may deviate from its nominal value. It is usually set by design engineers using their
experience, by draftsman, or as a part of default routine of a CAD system. The worst situation is
where a proper stack-up analysis of dimensional tolerances has not been performed for all of the
components in a functional system. When this is not done, all component parts can be within
specifications, but the final assemblyv may not be functional. Thus, in order to improve the
performance of the final assembly, a proper stack-up analysis is essential for specifying dimensional
tolerances of each component.

2. Variation Stack-Up Analysis

The variation stack-up analysis in Figure 2.1 interprets the tolerance specification range as
statistical parameters instead of physical limits; then it computes and statistically analyzes the
stack-up variation of the final assembly. It allows engineers to evaluate the effect of dimensional
tolerances of each component on the performance of the assembly.

Silxipy.00)
X, _/_L. Variation stack-up
function
Sfo(x:u,,0,)
Jr(Yibiy, Oy)

Y =g(X,, X, X)) —= = oy

Figure 2.1 Variation stack-up analysis.
Let X,;,X,,---,X, represent the component dimensional variations which may affect the

performance of the final assembly. Each variation is denoted by the probability density function
fix p;, 6)with mean pg; and standard deviation o6;, The statistical distribution of each variation
represented by the probability density function is transmitted through the variation stack-up function
g(X,,X,,+,X,)in a statistical distribution of the final assembly performance characteristic Y,
denoted by the probability density function fW¥py, oy).

The problems of the wvariation stack-up analysis involve the calculation of statistical
parameters of the distribution of the final assembly performance Y. Engineers require mean and

standard deviation of Y with respect to the probability density function fy{y):
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py= f:yfy(y)dy
1

oy= ( f:ﬂ (y—n y)zfy(y)dy) :

We may amrive at an eguivalent definition of mean in terms of the input probability density

functions f{x)’'s of the component dimensional variations. The mean of Y is the expectation of
g(X,, X,5,+--,X,) with respect to the probability density functions f(x)’'s. If each component

dimensional variation X; is independent of each other, then:

Hy= f:ﬂ f_mmg(Xl. Xz, oty X,,)fl(xl)fz(xz)‘--fn(xn)dxldx2'~-dxn

More commonly the yield or the reject rate mayv need to be evaluated. If the performance

requirement of Y is Nyx Ty, then for the final assembly to be acceptable, the performance
characteristic needs to meet the following constraint:
Ny" Tys YSNY+ Ty

Yield P is that proportion of the final assemblies which meet the above constraint:
Ny+Ty
PEfNyny Fy)dy
Similarly, we may arrive at an equivalent definition of yield in terms of the input probability
density function f{x). First we define an indicating function I(X;, X,,--, X,) such that
{ 1 if Ny_ TySg(Xl, Xz, "',X,oSNy‘f‘ Ty

I(Xl,Xz, e, X )=
0 elsewhere

Yield is the expectation of (X, X;, -, X,) with respect to the probability density function fi{x)

P= [ [ KX X XAy () ey iy

We have also assumed that each X, is independent of each other.

3. Process Mean Change

In many manufacturing processes today, the process means are monitored by a ¥ chart using

the standard three sigma control limits. However, the x chart with the usual sample size of 3, 4,
or 5 does not indicate for many samples when a severe mean shift has occurred [14]. Furthermore,
many processes are difficult to adjust and hold the process mean accurately. Even for processes
where the mean can be easily adjusted, 10 expected numbers of samples are required to detect a
shift of one standard deviation of the process natural variation when the sample size is equal to 3.
Some processes have permanent bias in the process mean value from the nominal. For example, if
a die dimension is deviated from its nominal value in a molding process, then we produce molded
parts of which the mean is not equal to the nominal

In- order to performm the variation stack-up analysis properly, we classify variations as the
result of part-to-part variation and process mean variation:

(1) The natural variation at a specified time, that is, part-to-part variation gp.

(2) The variation in the actual process mean value over time, that is, process mean variation &,,.



190 Byoungki Lee

3.1 Part-to-Part Variation

In every manufacturing process, a certain amount of natural variation will always exist. This
variation occurs regardless of how well of the process was designed or implemented, or how
adequately it is being maintained. The variation is uncontrollable and results from numerous small
causes. These variations are referred to as part-to-part variations, and, when they are small, we
say that the process is in statistical control.

The part-to-part variation 6, of ith dimensional characteristic can be estimated from R

control charts:

s - R

6,= 4,
where E, which is the center line of KR control chart of ith dimensional characteristic, is the
average range of samples taken when the process is allowed to run with no adjustments, and no lot
changes for at least 20 acceptable samples with all ranges outside the control limits of R being
excluded [4]. The constant d; is a function of the sample size, for a sample of 5, dy=2.326.

Consequently, the estimate of the part-to-part variation 6, reflects within-sample variability only.

3.2 Process Mean Variation

A process that is out of control is operating in the presence of process mean change as long
as sample range R is within control. This process mean change may come from one or more of a
number of sources associated with the machines, the operators, or the materials. The amount of

change in the process mean value is commonly expressed in terms of the part-to-part varation o,.
If a process mean is changed by the amount of ko, from its nominal value, then the actual process

mean is p= N+ ko, Figure 3.1 shows an example of process mean change.

Actual distribution of x with
process mean shift by ko,

Part-to-part variation

ISL \u" ",

N-T N

Figure 3.1 An example of process mean change.

In the example of Figure 3.1, if there is no process mean change, then no scrap will be
produced, since the distribution is within the tolerance specification limits. However, sifting in the
mean value by the amount of ko, causes scrap.

In some processes, the mean may vary about its nominal value and can be considered as a

random variable. If the process mean is random, its variation 6,, is:
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6, =V var(p)

=y var (N+ka,)
=0,/ var (k)

and cannot be measured instantaneously. It can be only measured over a time period sufficiently
wide to permit statistical inferences to be made. Hancock (4, 10] formulated the estimation of the
process mean variation.

Because of uncertainty in process mean, we model the process mean variation according to
various situations which the process encounters. Given that the process mean has changed, it could
have arrived at its new value by any route. It is useful, however, to classify such routes into
three categories: bias, shift, and drift changes. A bias change is an intentional or permanent
change in process mean from its nominal value. One example of this change is die dimensional
bias. A shift change is an instantaneous change in the actual process mean from nominal to some
new value where it is assumed to remain. This kind of change is characteristic of the result of
suddenly introducing a new material or machine tool change. A drift change occurs when the
process mean ceases to be constant over time, and begins to drift in a straight line away from
nominal. This is typical of tool wear.

3.2.1 Process Mean Bias
If a process mean is biased by the amount of ko, from its nominal value, then the actual

process mean is p= N+ko, or u=N—ko, and stays permanently at this value. In this case, &

is constant and the process mean variation is zero and the actual process mean can be easily
estimated from sample data. However, even the process mean change is detected, it cannot be
adjusted.

3.2.2 Process Mean Shift

If process mean shifts to a new value, u#=N+ko, and stays there for a certain period of
time, then k& can be assumed to be a constant during that period of time. However, the amount of
process mean shift, kg, is uncertain for a long period of time. We can consider the amount of

process mean shift as a random variable. The distribution type of the random variable depends on
process characteristic which has mean shift.

If the process mean shift occurs frequently, and can be detected and adjusted easily, then the

amount of mean shift, &, has normal distribution with zero mean and o, variation because of its

natural tendency toward its nominal value. Then the resulting distribution is also normally

distributed with the same mean to the nominal value and total variation, &7, which combines both

variations of part-to-part and process mean change. Since the part-to-part variation and the
process mean variation are independent of each other, the total variation can he expressed:

ar=y o+ o,
Since the variation of process mean is:

On =\ var (N ko)

= o'ko'ﬁ

ogr= aﬁV l*o‘i

the total variation can be expressed as:
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3.2.3 Process Mean Drift

In some processes, such as the machining process, the process mean is drifting while the
part-to-part variation is kept constant. We can model the mean drifting into a uniform random
variable and then the resulting distribution is not normal. In order to compute the reject rates at
different specification settings, the cumulative probability function should be derived.

Let the conditional probability density function of X, which is a dimensional characteristic for

a given mean value g, be
- 1 _1xzpye
fx(dp)= Vira, exp{ 5 5 )l. 6,00

and the density function of the mean x be
1

g(p)= r a{play, ay—a;=r
The marginal density function and the cumulative probability function of X can be written in
the form
10 =& b ool H (52
=L g - s
and

F(x) = [ fu)du

= 22 {1,4() —~ 18 + (1) — (1))

respectively, where

1 =
0= NErid z
o= [ dax

4. Monte Carlo Simulation Method for Variation Stack-Up Analysis

The Monte Carlo simulation method is the most recent technique developed for variation
stack-up analysis [1, 5, 12, 18]. It is particularly useful when:

(1) A large number of component dimensional characteristics affects the assembly dimension.

(2) The component dimensional characteristics are known to have a probability distribution which
is not normal.

(3) The relationship between the component dimensions and the assembly dimension is not linear.

(4) The assembly dimension may be physically impossible to measure, such as a dimension hidden
in an assembly or an internal clearance.

Recently, commercial PC-based packages enabling the simulation of tolerances have become
available. Pugh [15] briefly describes a software package called PRISM which allows the user to
simulate processes. A more comprehensive package, Variation Simulation Analysis software, is also
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available [18]. This software uses statistical simulation techniques to predict the amount of
variation that can occur in an assembly due to specified design tolerances and manufacturing or
assembly variation. Additionally, it can determine the locations of the predicted variation, the
contributing factors, and their percentage of contribution. This package includes a useful graphics
preprocessor for interfacing with CAD packages and interactive simulation model building as well as
a simulation language. A package, called GA-2000, by John Deere and Co. is also available [5].

There are two applications of the Monte Carlo simulation method to actual tolerancing
problems. Doydum and Perreira [3] presented an analytical method using the Monte Carlo
simulation for selecting the dimensions and tolerances of mating parts and precision of assembly
equipment where the mating parts possessed simple geometrics such as line and circle. Another
application of the Monte Carlo simulation method is to the circuit tolerance analysis problem which,
although it has the attraction of insensitivity to the number of toleranced components, is
computationally expensive. Soin and Rankin [17] have used variance prediction techniques to
improve simulation efficiency.

4.1 Simulation Model

The simulation model determines the relationship between an assembly and its components and
computes the expected variation of the assembly based on the components tolerances and variations
in manufacturing system. The three key elements in the model which are necessary for the
variation stack-up analysis of the assembly are identified as follows:

(1) Input variations have an effect on the performance of a finished assembly product. This
includes all the variations from individual component tolerances and variations due to random
factors existing in the manufacturing system. These variations are specified with their means,
standard deviations, and their statistical distribution types.

(2) Output measurement is a performance characteristic of the final assembly product. It will be
expressed as a functional relationship to the dimensional characteristics of each component.

(3) Stack-up function relates the input variations or independent variables and the output
measurement or dependent variable.

4.2 Monte Carlo Simulation Analysis

Once the simulation model is developed, a computer program performs the sampling
experiments upon the model. The sampling experiment consists of the random selection of a
sample value from the random number generator for each of the input variables and substitutes
those values into the model to computes the output measurement. This approach repeats until a
sufficiently large number of output measurement values are collected.

If we collect m output measurement values and compute an indicating function
I(X,, X,,,X,) defined:

1if Ny—Ty<g(X,, X;," . X )ENy+ Ty
(X, Xy, X,)= ,
0 otherwise
then the unbiased estimator of reject rate is:

1 m
R=1- - igl](xu,xz,-, LX)
Where x;; is the jth random selection of the #th input variation. Since (X, X5,-*,X,) may

have the value 1 or 0, each simulation run and tested against performance constraints constitutes a

Bernoulli trial. Therefore, the sampling distribution of the estimator R is binomial, with variance
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P RA=R)

m

which may be approximated by

~2 Ru-B
0 g

— = m
If m is large, the normal approximation with the same mean and variance to the binomial can be

used, the resulting 100(1 —2)% confidence interval for reject rate is determined by
ﬁ_Za/ﬂ, ﬁ(lm;kl <R< ﬁ_}_za/z ﬂly};—_ﬁl

where Z,, is the upper al2 percentage point of the standard normal distribution.  This

approximation gives reasonable results if mR and m(1—R) are both at least 5 [6]. Similarly, the

expected value of the output measurement may be estimated as:
~_1$ e e
Hy= ", Elg(xl;.xz,, )
We may obtain the sampling variance of the estimator ;At y as
02;;= ';ln' gl{g(xu. Xojy s X)) = Hy)?

A confidence interval may be constructed around the estimator ﬁ y by assuming a particular
form of probability density function for the sampling distribution of the estimator ;7 y, €.g. normal.
For example, if the sampling distribution of ;7 y is normal, then the 99.73% confidence interval is

P Yi30-"‘; . Note that whatever the form of the sampling distribution of an estimator is, the

sampling variance is inversely proportional to the sample size, when the simulation method is
employed.

4.3 Number of Samples Required

The number of samples, m , required to estimate a specific reject rate R value with a given
precision of a confidence interval at a confidence level of 1—a is found using the expression of the
confidence interval. First we define the precision p as the ratio of the magnitude of the estimator

R to the confidence interval half-length:

_ R
=, [RI=R
a2 m
Then the number of samples required is

2
S
Table 4.1 indicates how the required number of samples increases with precision of the
confidence interval. In some practical situations, the reject rate of 0.001 or even 0.000001 is of
interest. For these reject rates, we need narrow interval estimates. It requires additional samples.
which is further increased with the precision. If a reject rate of 1 part per million {(ppm). ie.
R=0.000001. is allowed with 99% confidence, then at least 665,639,334 samples are required in the

simulation to achieve the precision of =10 and this is impractical.
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Table 4.1 Number of samples required to estimate a reject rate with precision p at

999% confidence level.

o
R 2 5 10

05 27 166 666
0.1 240 1,498 5,991
0.01 2,636 16,475 65,898
0.001 26,599 166,244 664,974
0.0001 266,229 1,663,934 6,655,734
0.00001 2,662,533 16,640,834 66,563,334
0.000001 26,625,573 166,409,834 665,639,334

4.4 Sensitivity Analysis

This method determines the. contribution of each input variation to the predicted variation of
the output measurement using sensitivity analysis. This information gives engineers a tool to
determine which input variations are critical to the variation of the output measurement. Sensitivity
analysis is performed separately from random simulations, and varies each input variation to its
high, low, and median values, one at a time, while holding all other input variations at their median
values. It then notes the effect, if any, on the output measurement. It can be called the
High-Low-Median (HLM) analysis.

For each input variation, the range Ry which is total amount of output measurement changed
when the input variation is changed from high to low to median can be calculated:
Ry=Y .. Yo
where Y. is the maximum value that the output measurement reached and Yuin is the

minimum value that the output measurement reached.

From this range calculation, an approximation of the output measurement variance, Gzy due to

an input variation is determined. The variance is a statistic that defines the amount of spread that
a group of data has. Since the group of data generated from the HLM analysis is only two values,
output measurement high and low, the variance is approximated. For HLM purposes, simulation
assumes that the output measurement behaves normally, and that the range between output
measurement high and low is equal to six standard deviations, or:

Ry=60'y
R2
A="5

where 02y is the variance of the output measurement due to an input variation.

HLM analysis calculates Uzy in this manner for all » input variations and their effect on all
output measurements. Then, the results from each output are summed to give the main effect
variance:

Chu= oy, + 0y, + ... +dy,
The percentage which each input variation contributes to the overall HLM variation of the output
measurement is:
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Y

o
9% contribution = ( ) )x 100
HLM

This process ranks the input variations in order of contribution to the variation of the output
measurement based on the HLM analysis and determines the major contributors.

The HLM analysis has a limitation. It assumes that only main effects of tolerances are
significant and interactive effects between the tolerances are not present. For example, when

tolerance 7; is varied alone, it will cause the output measurement to vary by amount a; when
tolerance 7T is varied alone, it will cause the output measurement to vary by amount a; when
both tolerances 7; and 7; are varied, the output variation will be equal to a;+a; This

assumption, however, does not always hold true, because of interactive effects. Regression analysis
[2, 7, 8, 9, 16] or experimental design (11, 13] can be used to determine the major contributors. By
constructing full-factorial experiments, we can assess the significance of interactive affects in
addition to main affects. This provision allows for groups of contributors to be studied as a unit
alongside any combination of individual and/or grouped input variable sets.

5. Conclusions

The variation stack-up analysis interprets the tolerance specification range as statistical
parameters instead of physical limits, then it computes and statistically analyzes the stack-up
variation due to not only individual component tolerances, but random factors in the assembly and
manufacturing processes. This analysis allows evaluation of the effect of component tolerances and
process random factors on the performance of the final assembly.

This research presented a process mean changing model and discussed the effect of process
mean change on the final assembly. In this paper, we classified the cases of process mean change
according to the types of process variations and for each case, statistically modeled the process
mean change. A bias change is an intentional or permanent change in process mean from its
nominal value. In this case, process mean variation is zero and actual process mean can be easily
estimated from manufacturing data. A shift change is an instantaneous change in the actual
process mean from a nominal to some new value where it is assumed to remain. If the process
mean shift occurs frequently, and can be detected and adjusted easily, then the amount of mean
shift can be modeled as a normal random variable because of its natural tendency toward its
nominal value. Then the resulting distribution is also normally distributed. A drift change occurs
when the process mean ceases to be constant over time, and begins to drift in a straight line away
from nominal. This is typical of tool wear. In this case, we can model the mean drifting into a
uniform random variable and then the resulting distribution is not normal.

This research presented a Monte Carlo simulation method for variation stack-up analysis.
This method is particularly useful when: (1) input variations affect the performance of the final
assembly, (2) some input variations have non-normal distribution, and (3) the stack-up function
between input variations and the output measurement is not linear. Sensitivity analysis was also
presented as a part of the methodology. Sensitivity analysis calculates the contribution of each
input variations to the variation of the final assembly performance. This analysis is a tool for
design and manufacturing engineers to help them determine which variations are critical to the final
assembly performance.
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