Journal of the Society of Naval Architects of Korea (대한조선학회논문집)
- Volume 31 Issue 3
- /
- Pages.12-18
- /
- 1994
- /
- 1225-1143(pISSN)
- /
- 2287-7355(eISSN)
A Study on the Efficient Optimization Method by Coupling Genetic Algorithm and Direct Search Method
유전적 알고리즘과 직접탐색법의 결합에 의한 효율적인 최적화방법에 관한 연구
Abstract
Optimization in the engineering design is to select the best of many possible design alternatives in a complex design space. In order to optimize, various optimization methods have been used. One major problem of traditional optimization methods is that they often result in local optima. Recently genetic algorithm based on the mechanics of natural selection and natural genetics is used in many application fields for optimization. Genetic algorithm is more powerful to local optima, but it requires more calculation time and has difficulties in finding exact optimum point in design variable with real data type generally. In this paper. hybrid method was developed by coupling genetic algorithm and traditional direct search method. The developed method finds out a region for global optimum using genetic algorithm, and is to search global optimum using direct search method based on results obtained from genetic algorithm. By using hybrid method, calculation time is reduced and search efficient for optimum point is increased.
공학설계에 있어서 최적해를 얻기 위한 방법중의 하나로 최적화방법이 많이 사용되어 왔으나, 기존의 최적화방법에서는 설계점이 국부 최적점으로 빠져 들어갈 경우 그 영역을 벗어날 수 있는 방법이 없기 때문에, 최적화의 초기점을 달리하여 반복계산을 수행하여야 하는 불편한 점이 있었다. 유전적 알고리즘은 기존의 최적화방법에 비하여 다수의 설계점을 동시에 탐색하는 특성이 있어 국부 최적점에 빠질 가능성이 적은 반면, 계산시간이 많이 소요되고 전체 최적점 근처까지는 잘 수렴하나 정확한 최적점을 잘 찾지 못하는 한계가 있다. 본 연구에서는 유전적 알고리즘과 직접탐색법을 결합하여 이들의 단점을 보완한 즉, 전체 최적점을 보다 효율적으로 찾고 계산시간을 줄일 수 있는 방법을 제시하였다. 이 방법은 유전적 알고리즘을 이용하여 최적점이 존재하는 영역을 찾은 후에, 그 영역에서 직접탐색법을 이용하여 보다 정확한 최적점을 찾는 것으로, 예제를 통하여 제안된 방법의 유용성을 보였다.
Keywords