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Analytical Evaluation of the Surface
Integral in the Singularity Methods
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(From T.S.N.A.K., Vol. 29, No. 1, 1992)

Abstract

For a planar curve-sided panel with constant or linear density distributions of source
or doublet in the singularity methods, Cantaloube and Rehbach show that the surface
integral can be transformed into contour integral by using Stokes’ formulas. As an
extension of their formulations, this paper deals with a planar polygonal panel for which
we derive the closed-forms of the potentials and the velocities induced by the singularity
distributions.

Test calculations show that the analytical evaluation of the closed-forms is superior
to numerical integration (suggested by Cantaloube and Rehbach) of the contour integral.
The compact and explicit expressions may produce accurate values of matrix elements of
simultaneous linear equations in the singularity methods with much reduced computer
time.

1. INTRODUCTION

The fundamental problem for computing the potential flow about arbitrary bodies is
to determine velocity potential ¢ in a simply connected fluid domain. Using Green’s scalar
identity, the velocity potential can be represented from distributions of sources and doublets on
the boundary surfaces. Applying the normal boundary condition (that is, the no-penetration
condition) at the collocation points in the potential-based panel methods (which have been
widely used in marine hydrodynamics) results in a linear system of algebraic equations to be
solved for unknown doublet strengths on each panel (or at each vertex) with known source
strengths. The associated surface integrals should be evaluated at the collocation points to
obtain the matrix elements of the linear system. Therefore a fast and accurate computation
of these elements is very important in the numerical solution.

In the singularity methods applied to the potential flow problem, the potential ¢ within
the fluid domain D can be expressed approximately as a sum of each contribution in terms
of the surface value of ¢ and its normal derivative n - V¢ on each panel of the discretized
boundary surfaces S;;

Cb(ip):_ig/ﬂi{%ﬂ'vf(b—(ﬁﬂ‘vf(;)}dsg (1)
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Here the subscript £ refers to an integration variable. r is a distance between an integration
point z, on S; and any field point z, located in D. The first and the second terms in the
integral represent the potential due to a surface distribution, respectively, of source-type
singularity with a density ¢ = .- V¢ and of doublet-type singularity with a density u = —¢.
The velocity components can be derived by differentiation of Eq. (1) with respect to the
coordinates of the field point. We may take without loss of generality one planar panel as
the integration region concerned herein, which can be regarded as a part of the discretized
boundary surface.

The closed-form expressions of the surface integrals for constant source distributions over
flat quadrilateral panels have been introduced by Hess & Smith [1]. They expressed the sur-
face integrals as a superposition of line integrals for each side of the panels, with independent
treatment of the contribution from the side. Webster [2] has extended the Hess and Smith
analysis to a triangular panel in order to eliminate the discontinuity problem for a flat quadri-
lateral source panel by allowing a linear variation of the source strength across the triangular
panel. These two approaches are concerned with only the source distributions and the re-
sultant expressions are considerably complicated to be coded for the numerical computation.
A simpler and more unified derivation has been provided by Newman [3] for computing the
potential due to a constant doublet or source distribution. His analyses are based on the
elementary plane geometry related to the solid angle of a panel. He defined four infinite
sectors (for a quadrilateral panel), bounded by semi-infinite extensions of the two adjacent
sides of the panel with respect to the corresponding vertices, such that the difference between
the domains of the four sectors is the domain of the panel. Then the surface integral over
each infinite sector is evaluated in terms of the included angle of the corresponding vertex
projected onto the unit sphere with center at the field point. He has also described the more
general recursive scheme for computing the potential due to a source or doublet distribution
of linear, bilinear or higher order form. However the corresponding results for the induced
velocities due to such singularity distributions do not appear explicitly.

Another elegant approach based on mathematical formulations has been presented by
Cantaloube & Rehbach [4], by which they introduced more explicit expressions of the surface
integrals for the source or doublet distribution. With vector operations of the integrands using
Stokes’ formulas, they show that the surface integrals for the constant or linear distributions
of sources and doublets over a planar facet can be transformed into line integrals along the
contour of the panel. First, for subsequent use in the following sections, we take here their
resultant expressions for the induced potentials ¢ and the induced velocities V for a source
distribution,

¢ = fa x dlg — (n- r)faA dl
+(n r)(n-e)n {Voxfln('r—i—e r)dl}
—n- (Vo x fc rdl)] (2)
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r X dl;
+Voln-§ = - () § A dlg)] (3)
and for a doublet distribution,
B =~ fpd-dl+ (- n x Vi)
4r c ¢ B
§ In(r + e )dl) (4)
1 1
vy — ___— il _ .
VW = - {f wVe) xdle~ Vi f A-di
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~(nx V) x (wx § =6} (5)

It is noted that the signs of the third and the fifth integral in Eq. (3) and the second and
the third integral in Eq. (5) are opposite to those in the original paper (see Suh [5]). The
superscripts (o) and (u) refer to the source and the doublet singularity, respectively. The
contour integrals are performed along the perimeter of the panel C in a counterclockwise
sense. The unit normal to the surface n points outward in the sense of a right-handed-rule
and dl, is the integration element along the contour C. The distance vector r is defined as
z¢ — z, where the subscripts  and p refer to the source point and the field point respectively.
The unit vector e is taken as £n where the sign is chosen such that e - r is not negative. For
the use of Stokes’ formulas they used the following key relation introduced by Guiraud [6]:

V)= —Vx4, with 4= 2XL (6)

T r(r+e-r)

Here Equation (6) holds for more generally e independent of the integration point Tg.

The major advantages of their study are that the formulations are valid for a planar curve-
sided panel and that the resultant equations are expressed in a global coordinate system while
the aforementioned analyses (1, 2, 3] require the transformation to the local coordinate system.
Thus the expressions derived by Cantaloube & Rehbach may be regarded as a more computer-
oriented form. They have proposed the use of direct numerical integrations of the line integrals
by an integration quadrature (for example, Simpson rule or Gaussian quadrature), illustrating
the numerical consistency and accuracy for a linear doublet distribution on a quadrilateral
panel. However when a field point is very close to the sides or vertices of a panel, a large
number of the quadrature base points and considerable effort to choose these points suitably
would be needed in order to achieve good comparisons with the known values. Such numerical
implementation in a computer code may lead to a large amount of extra-computer time.

As an extension of the formulation of Cantaloube & Rehbach, the present paper deals
with a planar polygonal panel (that is, with a planar panel with an arbitrary number of sides)
for which the line integrals given in Egs. (2) through (5) can be reduced to the closed-forms.
Derivation of these closed-forms is the main scope of the present paper. The closed-form
expressions for the potential and velocity induced by a constant source distribution are pre-
sented in Section 2. They are expressed compactly as a sum of contribution from each side
of the panel, in terms of appropriate basic integrals. It will be shown that each contribution
depends on the relative position of a field point with respect to the side. Also we will consider
the limiting cases that the field point approach directly above or below the panel surface (the
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self-induction cases) in order to ensure the required singular behavior of the potential and
the velocity. The corresponding results for a doublet distribution of constant strength are
provided in Section 3. Section 4 is devoted to analytical evaluations of the basic integrals
derived in the preceding sections. In Section 5, a similar approach is developed to extend
the analyses to a linear variation of source or doublet strength, which provides continuous
singularity strength distributions on triangular panels. In Section 6, for the purpose of check-
ing the convenience and accuracy of the present approach, we take constant distributions of
singularities on a rectangular panel of a large aspect ratio and some field points in the extreme
vicinity of the panel. Test computations of the associated line integrals at the field points
show an advantage of the analytical evaluations over numerical integrations recommended
by Cantaloube & Rehbach. The same aspect appears in comparisons of the potentials and
velocities.

2. CONSTANT SOURCE DISTRIBUTION

The potential at any field point z,(z,y, 2) induced by a distribution of sources with unit
density o = 1 can be written as, by taking the first two integrals from Eq. (2),

1 T
() — _—f{n.¢ = —(n . .
¢ 47r{ﬂ fcr XdLE (ﬂ 1)}12_4 dl{} (7)
Using Eq. (6) for A, we can write
1 T
(6) — ___fn. = — ).
4 B 47r{n f()v")(dl‘E (@)
1 1 eEXT
- == {l
fc(r v er %
1 rr-(dlxn)
= ——— —————— 8
47r?€; T+e-r (8)

Note that we obtain the useful relation from this rearrangement as follows:

X T
lzg-Vxﬁ, with E:_E_L
T r+e-r

(9)

The term r - (dl; x n)/dl represents the projection of the distance vector r onto the vector
perpendicular to both dl; and n. Because it is constant for each side of a straightline and ¢-r.
(that is, the normal distance of the field point from the panel) is constant for a planar panel,
Equation (8) can be written as

1

1
@ = =% / di 10
¢ 47ri:1b1 crta * (10)

where N, is the number of sides of the polygon panel (for example, N, = 3 for triangular
panels), a = e-r is a non-negative constant value for all sides, and b; = r- (g;, x n) is constant
for each side whose directional vector ¢;, = dl; /dl¢ is chosen in a counterclockwise direction
as the convention of the contour integral. The vertices composed of the panel and the sides
are also defined in a counterclockwise order. The field point is at an arbitrary position except
the side lines.
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It is seen that the integral term for each side is related to the relative position of the field
point with respect to the side. The integral, as will be shown, depends only on the coordinates
of the two end points of the side.

In the self-induction case that the field point is just above or below the panel surface,
since n -7 = 0 and then the second term in Eq. (7) vanishes, we get

r
¢ = ——Wn.-jij x dl (11)

Equation (11) is reduced to, just by setting ¢ = 0 in Eq. (10)

1 Y

¢ = ————Zb / Zdle (12)

Equation (12) is also valid for the case that the field point is on the outside extension plane
of the planar panel.

Next, the corresponding velocity at the field point is expressed as, in terms of only the
first two integrals in Eq. (3),

1 1
(o) — . . b
v 47r{n'}€'A dl£+ﬂxfcrdl£} (13)

Rearranging this equation yields

1 exr 1
() — _— == . -
v {ﬂcr(r+e r) d'l{+ﬂxfcrdlf}

1

= ——-{nn 6)21)/ '——7‘:—&5 lf
+§: / ~dlg}. (14)

where e,,,, = n X ¢;, (and then the unit vectors n,¢;, and e, are orthogonal each other).

Now we consider the self-induction case that the field point is just above the panel surface.
The first integral in Eq. (13), which is evidently related to the solid angle subtended at the
field point by the panel (see Eq. (6)), can be written as

fCA-dz - —//Sa-vt(%)dsg = o, (15)

It can also be derived by taking e = —n (representing the approach of the field point towards
the upper surface) and e - r = 0 directly. Then Equation (14) leads to

N‘
v = in ~ —1'227”,/ %dle (16)

On the other hand, when z, approaches towards the lower surface of the panel, the integral
in Eq. (15) becomes 27 and then the sign of the first term in Eq. (16) is opposite. If z, is
on the (outside) extension plane of the planar panel, the first term in Eq. (16) vanishes. In
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this case, there is only the contribution from the second term in Eq. (13) associated with the
geometrical skewness of the panel. If we take a field point at the centroid of a rectangular
panel, the second term becomes zero since the contribution from one side (say, defined in
i = 1) is canceled by that from the opposite side (defined in i = 4).

3. CONSTANT DOUBLET DISTRIBUTION

The potential at a field point z,(z,y, 2) induced by a doublet distribution of unit density
p =1 (recall that p is defined as u = —¢) over a planar panel is given by, taking only the
first term from Eq. (4),

1
() — 4 = .
¢ +47r f;A dlf (17)

Following similar treatments to Egs. (7) and (13), after some arrangements for A given in
Eq. (6), we can write Eq. (17) as

1 exr
(u) _— - == .
¢ + f};r( dl

47 r+e )
1

In the self-induction case that the field point is just above the panel, from Eq. (15) for
$c A - dl,, it follows that

) - _H
o = L (19)

It presents the correct behavior of the potential when a field point approach the panel sur-
face. For the case that the field point is on the (outside) extension of the planar panel, this
expression is replaced by ¢ = 0.

Now the corresponding induced velocity can be expressed by the line integral taken from
Eq. (5) . .

v = —— ?{ Ve(2) x d 0

v o 5(T)>< Le (20)

Indeed the planeness assumption is not required for constant doublet strength distributions.
Rewriting this equation gives

v = = §jd./ 2 d (21)
- dm = e 13

where d; = r X ¢;.. Equation (20) has been often used in the lifting line theory and the lifting
surface theory where a discrete vortex lattice may equivalently be replaced by the uniform
doublet distribution of the same vortex strength over the surface enclosed by the lattice.
Unlike the potential, the velocity has the continuous behavior (no-jump) when the field point
crosses the panel surface.

4. CLOSED-FORMS OF THE BASIC INTEGRALS

In the preceding sections, we have expressed the induced potentials and velocities in forms
of a sum of the more simplified line integral given in Eqs. (10), (14), (18), (21). Since these



Jung-Chun Suh 7

equations cover inherently the self-induction cases (see Egs. (12), (16), (19)), we will derive
here closed-forms of the following line integrals (of four types) involved in Egs. (10), (14),
(18), (21):

1 1
I, = / = dle, I2; = / dle,
c: T G r+a

1 1
o= [ o, W= [ Sl
13 /c.- rir+a) ° 1 e3¢

3

The line integrals for each side of the polygon can be treated independently by the geomet-
ric parameters of that side. It is sufficient, therefore, to consider only one side of the panel,
say 1 = 1, for the purpose of these evaluations. For simplicity of the presentation, we drop
the subscript 7 used for identifying the side. We take, without loss of generality, a local plane
coordinate system (z', 2’) in the plane through the field point z, and the side concerned, such
that the side lies on the z’-axis, one end point of the side is at the origin and the integration
path is performed along the positive x’-axis, as shown in Fig. 1 below.

ZI

oz,(, 2')

0 1
Ql Q?

Fig. 1: A local plane coordinate

The reason that we have chosen the local coordinate system is that, as will be shown, the
final closed-forms of the basic integrals would be much more compact than those expressed
in the global coordinate system, even although both forms can produce identical results.

The end points of the side of length [ are expressed in two coordinate systems, namely, by
Q1(x1,y1,21) and Qa(x2,ys, 29) in the global coordinate system, and by @;(0,0) and Q,({,0)
in the local plane coordinate system. The field point is also defined by z,(z,,¥p, z,) and
z,(x', 2') respectively. Then the local coordinates (z’,z') can be expressed in terms of the
global coordinates as follows:

The vectors Q1@ and Q,z, are written as, in the global coordinate system,

Qi1Q2 = (z2—x1)i+ (ya —vy1)j + (22 — 21)k
M = (-T’p - I1)1+ (yp - yl)i+ (Zp - 31)1‘2-

Applying the relation for the magnitude of the cross product of the two vectors, we get |2/|
= le; X Q1| From the dot product of the two vectors, it follows that 2’ = ¢, - Q1z,.
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To simply the notation in the following development, we drop the prime (/) in z’ and 2’ and
define the distances between the end points and the field point by Ry = |Q1z,| = Va? + 22

and Ry = |Q2x,| = 1/({ — z)? + z2. The integral forms given by Gradshteyn & Ryzhik [7] (on
pages 68, 81, 84) have been used.

1
(1) For the integral I1 = /c - dl¢, expressing the integral in terms of the local coordinates

and 2 and introducing an integration variable £, we get

! 1
h e
o J—p+2
. Ry+1l~1z Ri+zx
= In R 3 (OrlnRg—(l——w))

n =

This expression is also valid for the cases of 2 = 0, that is, of that the field point is on
the extension line of the side.

1
(2) The evaluation of the integral 12 = / - dl¢ requires more complicated algebraic ma-
a

nipulation and only the final results with a brief description are presented here. First
we transform the variable ¢ into ¢t = {/(z — €)? + 2% + a for use of an integrable form.
Then two cases depending on the value of x should be considered as follows:

(i) When = < 0 or £ > [, we get, after some arrangements with the new integration
limits L= Ry +aand U =Ry +a,

I2 = / g t—a dt
L t/t?2 - 2at + a? — 22
= Il -~ sin™!(H) (22)
a2

NPTy

where
_ V22— a2+ a(l - 2)R) + azhy)}
B 22(Ry + a)(R2 + a)
o Iv22 — a? 1+ a(l — 2z)
T
22(R1 + a)(R2 + Cl) (l - .Z')Rl - 113'R2

Here for efficient computation, we have used the trigonometric addition formulae
to combine the pair of arcsine functions appeared in the manipulation.

H

(ii) When 0 < z < I, the integration interval [0,1] is divided into two parts [0, z] and
[x,1] to which the previous procedure can be applied separately.

2 = de

PR 1
(/0 +-/f)\/(a:—§)2+22+a

=11 —sin™'(H)} (23)

a
= az{ﬁ
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Equation (23) is valid if the following restriction that appears in the use of the
trigonometric addition formulae (Gradshteyn & Ryzhik, p. 48) holds, otherwise we
take Eq. (22):
(R, + a)*(2* + aRy)?
+(Ry + 0)*(2* + aRy)?
< 2%(Ry + a)*(Ry + o)’

If 22 = a?, the integral 12 becomes the more simplified form:

x l-—SC)

2=11-
(R1+a+R2+a

(3) For the integral 13 = / dle, we take a partial fraction for the integrand (unless

cr(r+a)
a = 0) and directly use the results in the cases (1) and (2):

1 rt1 1 1
I3 ==/ (-- = (I, -
a/o(r T+a)d€ a(I1 12)

But if ¢ = 0, a direct integration yields

L 1
8= | o

1 l—2z x
= —(arctan —— + arctan —)

|| || |z
Furthermore if a = 0 and 2z = 0, then
! 1 l
I3 = / ——df = ——
0 (z —&)? ¢ z(z - 1)

(4) The integral 14 = /c ;5 dl¢ can also be performed directly, yielding

4 =

t 1

J ;e
RVEETI
1¢l—z =«
2Um YR
If 2 =0, it is replaced by

L |

W [l
0 T—ep ®
1 1 1
= +§{(l—_";)“§—;2'} for x > {

1 1 1
—‘5{(1—_;-)*2-—;2—} forz <0
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When the inverse trigonometric functions are implemented in the computational algo-
rithm, their values may be evaluated in the interval [-7/2,7/2] without considering the
separate arguments of the functions.

5. EXTENSION TO LINEAR DISTRIBUTIONS

In this section the preceding analyses are extended to include a linear distribution of
sources and doublets over a planar panel. In order to determine the distribution shape
uniquely, it is enough to take only three points (that are not collinear) of a polygon. We
consider therefore a triangular panel of a linear source distribution herein (the following
procedure can be applied similarly to the doublet distribution). A gradient form of the linear
varying source strength distributed on the panel is specified as

Vo = ai+85+7k

The coefficients a, § and 7 are determined from the singularity strength values at the vertices,
by using the fact that the vector Vo is parallel to the panel. Define the source strengths at
the vertices by oy, (1 = 1,2,3) and the vertex positions by (z;,y;, 2:). Then we can form a
linear equation system for «, § and ~:

Oiy1 — 04
[;
a(ip1 — xi) + BWiy1 — ) +v(2i1 — )
l;

Vo g,

(i=1,2,3)

Here recall that the vertices and the sides are defined in a counterclockwise sense and the
index 4 corresponds to 1 by the cyclic convention. By the Cramer’s rule, o, 8 and 7y are
determined:

a = det (i — 0ir1, ¥ — Yir1s 2 — Zig1)/ O
B = det (xi — Tiy1,0i — Oigr, 2 — Zig1) /D
v = det (@i — Tiv1, % — Yir1, 05 — Tir1)/A
where det (---) denotes the determinant of a matrix and A = det (z;—Tip1, ¥i — Yit1, 2i — Zit1)-

Now in order to derive closed-forms for Egs. (2) through (5) including the linear variation
terms, we introduce first the following basic integrals to be evaluated additionally:

_[ ¢ L 3
Jl,-—/Cdeé, J2’_/c,»r+ad£’
¢ £

= | 4; = | =dg,
13 /C,» r(r+a)d€’ J /a- 3 ¢

35 = [ rdg, 36;= [ In(r +a)de

i

Since we can superpose the contribution of the associated line integrals for each side like
the constant distribution cases, we drop the subscript ¢ for simple notation. The evaluation
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of these integrals is considerably straightforward and only the final results are presented here,
without explicit manipulation, using the basic integrals obtained in the previous section:

J1 = RQ—R1+1‘I].

Ry +a
= — Ry —al 1
J2 R, 1 aan+a+w2
J3 = lnR2+a+xIB
Ri+a
1 1
Ji = — - — 14
7 R2+m

J5 = %{(Z—I)Rz + xR, +Z2I].}
J6 = (I—z)ln(Ry+a)+zin(R; +a) -l +all
+(2* - aH)I3

The closed-forms of Eqs. (2) through (5) for the potentials and velocities due to the linear
distributions can be expressed in terms of the basic integrals in a form analogous to those of
the constant distributions, after recovering the index ¢ for the side and vertex:

N,
¢(U) = -—i Z bi(O','IZL' + Vo - Ql.J2,')
am !
+Vo - Em; (J6l - aJSi) (24)
Nu
L/_(") = —217—]_ [Z’L_(ﬂ . _Q){bi(UiI3i + Vo - _@JiJB,')
i=1
+V0o - e, 16;} + em, (01l + Vo - ¢, J1;)
1 AL
+E(ﬂ ce) D {bi(pldi + V- e,33:)
i=1

+Vip - QmaJGi} (26)

¢(#) —

1 N.
Ve = o > {di(pl4i + Vi - e, J4:)
i=1
+Vu(n- e)bild; — nVi - e, 11} (27)

Neglecting the terms involving Vo, we can of course reduce these expressions to the results
for the case of constant singularity distributions derived already in the preceding sections. It
confirms easily that the normal component of ¥(°) has the same form as ¢(*) except notation
of the singularity.

6. TEST CALCULATIONS FOR CONSTANT DISTRIBUTIONS

The present analysis was programmed for practical implementation (Suh [8]) and was
verified by comparing the induced potentials and velocities obtained by the present method
with those by the method of Newman. The comparison was based on the computer output for
several cases of the constant singularity distributions. It was found that the resultant values
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are same up to the significant figures allowed by truncation or round-off error of a computer
(but the details are not presented here). Thus only in the following extreme cases, comparison
of analytic integration with numerical integration is provided herein to check a sensitivity of
the calculation. A planar rectangular element of 12 x 1 (that is, aspect ratio is 12) is taken
for the test calculations. It may be assumed that the element is in the plane z = 0 with
the four vertices at (0,0,0),(1,0,0), (1,12,0),(0,12,0), respectively. We take various field
points in the extreme vicinity of the element surface or one vertex. Their coordinates are,
with alphabetical labelling, A(0.5, 6.0, +0.0), B(0.5, 6.0, +0.00001), C(0.5, 6.0, —0.00001),
D(0.0, —0.00001, 0.0), E(0.0, 0.0, +0.00001), F(0.0, 0.0, —0.00001). The points A, B and
C are, respectively, on, just above and below of the centroid of the element and D, E and F
are very near the origin. The constant densities of source and doublet distributions are taken
with 1, (thatis, 0 =1, p=1).

First we will compare numerical integrations and analytical evaluations of the basic inte-
grals described in Section 4. At the field points A, D and F, the values of the integrals for
each side are compared in Tables 1, 2 and 3, respectively. With an Apollo Workstation DN
10000, high precision was used in Fortran program. The influences of the basic integrals at the
field points by the respective sides of the element are listed. In the tables, the side 1 denotes
the line between the vertices (0,0,0) and (1,0,0) and the other sides are numbered in coun-
terclockwise order in a similar way. In the numerical calculations, the Gaussian quadratures
with various quadrature-base points were used to show convergence of numerical integration.
Some loss in accuracy of numerical integrations appears when the field point is very close
from the sides or the vertices, and its amount depends on the number of the quadrature-base
points used.

As expected, the difference between the analytical and the numerical results increases with
the order of r in the denominator of the integrand, and decreases with the distance of field
point from the sides (or vertices). It is seen that for a field point having a numerically singular
behavior in the line integral, many quadrature-base points, even up to 2500, is required to
reach the same order as the analytical evaluations. It implies that a numerical integration
results in a large amount of computer time undesirably.

The induced velocities and potentials at the selected field points are compared in Tables 4
through 9 in the same fashion in order to confirm the aforementioned advantages in compu-
tation efficiency. In Tables 4, 5 and 6, it is observed that the analytic integration gives the
correct singular behavior as the field point approach the centroid of the panel. It is found
that the values of V{7, ¢{#), ¢() and V{# obtained by the numerical integration with 20
quadrature points (N = 20) are inaccurate compared with those obtained with more number
of the quadrature points. These features are profound when the field points are near the
vertex as shown in Tables 7, 8 and 9 and appear even for the cases of the other quadrature
points. Much more number of the quadrature points are required to achieve considerably
accurate values.

7. CONCLUDING REMARKS

The closed-forms (Egs. (24) through (27)) provided in Section 5 (in particular for the
induced velocities) are relatively much simpler than those given by Webster [2] and are more
explicit than those given by Newman (3], although it is very difficult to show precisely the
identities which exist among their expressions and the present ones because of the difference
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of the local coordinate systems used. These explicit simple expressions (even for the linear
distributions) may reduce the computer time significantly for formation of a set of simulta-
neous linear equations. In the potential-based panel methods, for example, the calculated
potentials form the fundamental matrix elements of the linear system to be solved and thus
such a formation is the primary factor of the computer time. Also the present expressions may
be used in complex-flow problems (in some of which we should often put a careful effort for
field points located inevitably in the extreme vicinity of the panel edges) to find accurately, for
example, (i) a convection velocity of circulation values at the wake sheet of a lifting body, (ii)
potential and velocity distributions at a hull surface induced by propellers in propeller-hull
interaction problems, and (iii) induced potential and velocity in mutual interaction problems
such as ducted propellers and compound propellers.

We found the new relation of Eq. (9) which can be applied directly to calculation of the
volumetric integral of vorticity distributions given by the Biot-Savart integral. This integral
would often require to be evaluated when the vorticity-velocity formulation is used in inviscid
rotational flow problems involving shear-flow interaction. For piecewise constant vorticity
distribution within a volumetric element with planar faces, we can first transform the volume
integral into the surface integrals on the enclosed faces by using Gauss theorem. The integrand
of the transformed surface integrals becomes 1/r and then Eq. (9) (with e = +n) can be used
to transform each surface integral into the line integrals expressed in a form analogous to

Eq. (9).
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Table 1. Comparison of the Basic Integrals by Analytic and
Numerical Calculation at Point A (0.5, 6.0, +0.0)

Gaussian-Quadrature Points, N = Analytic
Side 20 [ 100 [ 500 | 2500
1 [ .1665E+00 | .1665E+00 | .1665E+00 | .1665E+00 | .1665E+00
[ idg 2 || .6275E+01 | .6360E+01 | .6360E-401 | .6360E+01 | .6360E+01
3 | .1665E+00 | .1665E+400 | .1665E-+00 | .1665E+00 | .1665E4-00
4 || 6275E+01 | .6360E+01 | .6360E-+01 | .6360E+01 | .6360E+01
1 | .1665E+00 | .1665E+00 | .1665E-+00 | .1665E+00 | .1665E+00
_f(—,j—a)dg 2 || .6275E+01 | .6360E+01 | .6360E+01 | .6360E+01 | .6360E+01
3 | .1665E+00 { .1665E+00 | .1665E+00 | .1665E400 | .1665E400
4 || .6275E+01 | .6360E+01 | .6360E401 | .6360E401 | .6360E+01
1 2771E-01 | .2771E-01 | .2771E-01 | .2771E-01 | .2771E-01
j;(;lmdg 2 || .5550E+01 | .5951E+401 | .5951E+01 | .5951E+01 | .5951E+01
3 2771E-01 | .2771E-01 | .2771E-01 | .2771E-01 | .2771E-01
4 1| .5550E+01 | .5951E401 | .5951E+401 | .5951E+01 | .5951E+4-01
1 A4614E-02 | .4614E-02 | .4614E-02 | .4614E-02 | .4614E-02
J 5d¢ 2 || .6688E+01 | .7972E+01 | .7972E+401 | .7972E401 | .7972E+01
3 4614F-02 | .4614E-02 | .4614E-02 | .4614E-02 | .4614E-02
4 || 6688E+01 | .7972E+401 | .7972E+01 | .7972E+01 | .7972E4-01
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Table 2. Comparison of the Basic Integrals by Analytic and
Numerical Calculation at Point D (0.0, -0.00001, 0.0)
Gaussian-Quadrature Points, NV = Analytic
Side 20 [ 100 | 500 ] 2500

1 J7195E401 | J1037EA+02 | (1224E+02 | .1221E402 | .1221E+402

f %dﬁ 2 .3180E+01 | .3180E+01 | .3180E+01 | .3180E-+01 | .3180E+01

3 .8324E-01 | .8324E-01 | .8324E-01 | .8324E-01 | .8324E-01

4 7195E+01 | .1036E+02 | .1322E4-02 | .1400E+402 | .1400E+02

1 JT195E401 | L 1037E402 | .1224E402 | .1221E4-02 | .1221E+02

[ i€ | 2 || 3180E+01 | .3180E+01 | .3180E+01 | .3180E+01 | .3180E+01
3 8324E-01 | .8324E-01 | .8324E-01 | .8324E-01 | .8324E-01

4 .7195E401 | .1036E+02 | .1322E+02 | .1400E4-02 | .1400E+02

1 .8400E+03 | .2011E+05 | .1636E+06 | .1571E+06 | .1571E+06

J Tr‘:fa—)df 2 .1488E+01 | .1488E+01 | .1488E+01 | .1488E+01 | .1488E+01
3 .6928E-02 | .6928E-02 | .6928E-02 | .6928E-02 | .6928E-02

4 .6997E+02 | .1666E+04 | .3280E+05 | .9971E+05 | .1000E+06

1 | .2211B+06 | .1266E+09 | .1084E+11 | .1000E+11 | .1000E+11

J 7—,13-(15 2 9965E-+00 | .9965E+00 | .9965E+400 | .9965E+00 | .9965E+-00
3 B767E-03 | .5767E-03 | .5767E-03 | .5767E-03 | .5767E-03

4 1535E+04 | .8705E+06 | .3660E+09 { .4927E+10 | .5000E+10

Table 3. Comparison of the Basic Integrals by Analytic and
Numerical Calculation at Point E (0.0, 0.0, +0.00001)
Gaussian-Quadrature Points, N = Analytic
Side 20 | 100 | 500 | 2500

1 [ .7195E+01 | .1037E+02 | .1224E+02 | .1221E+02 | .1221E+02

J Lde 2 | .3180E+01 | .3180E+01 | .3180E+01 | .3180E+01 | .3180E+01

3 || .8324E-01 | .8324E-01 | .8324E-01 | .8324E-01 | .8324E-01

4 7195E401 | .1037E+02 | .1356E402 | .1469E+02 | .1469E+402

1 T187E+01 | .1018E+02 | .1121FE+402 | .1121E402 | .1121E402

J (Tia)dé 2 3180E+01 | .3180E+01 | .3180E+01 | .3180E+01 | .3180E+01
3 8324FE-01 | .8324E-01 | .8324E-01 | .8324E-01 | .8324E-01

4 J7195E401 | .1036E+02 | .1320E+402 | .1369E+02 | .1369E+02

1 .8378EK+03 | .1893E+05 | .1025E+06 | .1000E+06 | .1000E+06

f R;lg)dg 2 || .1488E+01 | .1488E+01 | .1488E+01 | .1488E+01 | .1488E+01
3 .6928K-02 | .6928E-02 | .6928E-02 | .6928E-02 | .6928E-02

4 .6998E+02 | .1674E+404 | .3636E+05 | .9987E+05 | .1000E+06

1 .2211E+06 | .12661+4-09 | .1084E+11 | .1000E+11 | .1000E+11

frl—sd.f 2 .9965E+00 | .9965E+00 | .9965E+00 | .9965E+00 | .9965E+00
3 D767E-03 | .5767E-03 | .5767E-03 | .6767E-03 | .5767E-03

4 1536E+04 | .8856E+06 | .5284EK+09 | .1004E+11 | .1000E+11

15
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Table 4.

Analytical Evaluation of the Surface Integral in the Singularity Methods

Comparison of Potentials and Velocities by Analytic and

Numerical Calculation at Point A (0.5, 6.0, +0.0)

Gaussian-Quadrature Points, NV = Analytic
20 | 100 | 500 | 2500
#@ 1 -0.6583E400 | -0.6650E+00 | -0.6650E+00 | -0.6650E+00 | -0.6650E+00
V) | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
v | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
V() || 0.4681E+00 | 0.5000E+00 | 0.5000E-+00 | 0.5000E+00 | 0.5000E+00
&  -0.4681E400 | -0.5000E400 | -0.5000E400 | -0.5000E+00 | -0.5000E+00
v [ 0.0000E+00 | 0.0600E-+00 | 0.0600E+00 | 0.0000E+00 | 0.0000E+00
V) || 0.0000E+00 [ 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E--00
Vs 1l 0.5366E400 | 0.6388E+00 | 0.6388E+00 | 0.6388E+00 | 0.6388E~+00
Table 5. Comparison of Potentials and Velocities by Analytic and
Numerical Calculation at Point B (0.5, 6.0, +0.00001)
Gaussian-Quadrature Points, N = Analytic
20 [ 100 [ 500 [ 2500
#@ [ -0.6583E+00 | -0.6650E4-00 | -0.6650E+00 | -0.6650E+00 | -0.6650E+00
V) [ 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
V{?) || 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E400 | 0.0000E+00
V@) 1 0.4681E+00 | 0.5000E+00 | 0.5000E+00 | 0.5000E+00 | 0.5000E+00
[ 6@ T -0.4681E+00 [ -0.5000E400 | -0.5000E+00 | -0.5000E400 | -0.5000E+00
Vil 0.5371E-21 | 0.2791E-22 | 0.5166E-21 | 0.3339E-21 | -0.2264E-21
V¥ [ -0.5143E-25 | 0.2006E-25 | 0.2288E-25 | 0.2600E-24 | 0.2309E-24
V¥ | 0.5366E+00 | 0.6388E+00 | 0.6388E+00 | 0.6388E+00 | 0.6388E+00
Table 6. Comparison of Potentials and Velocities by Analytic and
Numerical Calculation at Point C (0.5, 6.0, -0.00001)
Gaussian-Quadrature Points, NV = Analytic
20 1 100 ] 500 [ 2500
#@ T -0.6583E+00 | -0.6650E+00 | -0.6650E400 | -0.6650E+00 | -0.6650E+00
V{1 0.0000E+00 |{ 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
V. || 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E-+-00
V) [-0.4681E+00 | -0.5000E+00 | -0.5000E+00 | -0.5000E+00 | -0.5000E+00
&® T 0.4681E+00 | 0.5000E+00 | 0.5000E+00 | 0.5000E+400 | 0.5000E+00
VM 17-0.5371E-21 | -0.2791E-22 | -0.5166E-21 | -0.3339E-21 | 0.2264E-21
VW | 0.5143E-25 | -0.2006E-25 | -0.2288E-25 | -0.2600E-24 | -0.2309E-24
V1 10.5366E+00 | 0.6388E+00 | 0.6388E+00 | 0.6388E+00 | 0.6388E+00
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Table 7. Comparison of Potentials and Velocities by Analytic and
Numerical Calculation at Point D (0.0, -0.00001, 0.0)
Gaussian-Quadrature Points, V = Analytic
20 | 100 ] 500 | 2500
»@ ] -0.3325E4-00 | -0.3325E+00 | -0.3325E+00 | -0.3325E+00 | -0.3325E+00
Vo) 1 -0.3195E+00 | -0.5712E+00 | -0.7986E+00 | -0.8608E+00 | -0.8609E+00
V{7 | -0.5660E+00 | -0.8185E400 | -0.9672E+00 | -0.9647E+00 | -0.9647E+00
V) 1 0.1243E+00 | 0.1090E+00 | -0.5212E-02 | -0.2325E-10 | 0.4199E-17
& | -0.1243E+00 | -0.1090E4+00 | 0.5212E-02 | 0.2325E-10 | -0.4199E-17
V) T 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
V() 10.0000E+00 | 0.0000E-+00 | 0.0000E+00 | 0.0000E+00 | 0.0000E+00
Vi I -0.9611E-01 | -0.1007E-+03 | -0.8628E+04 | -0.7958E+04 | -0.7958E+04
Table 8. Comparison of Potentials and Velocities by Analytic and
Numerical Calculation at Point E (0.0, 0.0, +0.00001)
Gaussian-Quadrature Points, N = Analytic
20 [ 100 [ 500 ] 2500
»© ' -0.3325E+00 | -0.3325E+00 | -0.3325E+00 | -0.3325E+00 | -0.3325E+00
V@) 17-0.3196E+00 | -0.5726E+00 | -0.8259E+00 | -0.9159E+00 | -0.9160E+00
V(@) [-0.5660E+00 | -0.8185E+00 | -0.9672E+00 | -0.9647E4-00 | -0.9647E+-00
V) |7 0.1250E+00 | 0.1250E+00 | 0.1250E+00 | 0.1250E+00 | 0.1250E+00
& T-0.1250E+00 | -0.1250E+00 | -0.1250E+00 | -0.1250E+00 | -0.1250E+00
VT -0.1221E-02 | -0.7047E+00 | -0.4205E+03 | -0.7987E+04 | -0.7958E+04
V# [-0.1760E+00 | -0.1008E+03 | -0.8628E+04 | -0.7958E+-04 | -0.7958E4-04
V) [ 0.7985E-01 | 0.7985E-01 | 0.7985E-01 | 0.7985E-01 | 0.7985E-01
Table 9. Comparison of Potentials and Velocities by Analytic and
Numerical Calculation at Point F (0.0, 0.0, -0.00001)
Gaussian-Quadrature Points, N = Analytic
20 ] 100 [ 500 | 2500
#@ '-0.3325E400 | -0.3325E+00 | -0.3325E+-00 | -0.3325E+00 | -0.3325E+00
Vo | -0.3196E+00 | -0.5726E+00 | -0.8259E+00 | -0.9159E+00 | -0.9160E+00
Vi) [ -0.5660E+00 | -0.8185E+00 | -0.9672E+00 | -0.9647E+00 | -0.9647E+00
Vel 1-0.1250E+00 | -0.1250E+00 | -0.1250E+00 | -0.1250E+00 | -0.1250E+00
& T 0.1250E+00 | 0.1250E+00 | 0.1250E+00 | 0.1250E+00 | 0.1250E+00
Vi [ 0.1221E-02 | 0.7047E+00 | 0.4205E+03 | 0.7987E+04 | 0.7958E+04
vV [ 0.1760E4+00 | 0.1008E+03 | 0.8628E+04 | 0.7958E+04 | 0.7958E+04
Vi 1 0.7985E-01 | 0.7985E-01 | 0.7985E-01 | 0.7985E-01 | 0.7985E-01




