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APPROXIMATE QUEUE LENGTH DISTRIBUTION
OF MMPP/D/1 IN AN ATM MULTIPLEXER
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ABSTRACT

Qur previously proposed method is further applied to find the queue length distribution of MMPP/D! in
an ATM multiplexer. We derive some useful relationship between the cueue length distribution seen by
artiving cells and for a server befor each service.

The relations were used to improve our approximation. For MMPP/D] the calculated results show a good
agreement with those obtained by a simulation of the system. Furthermore, our approximation provides fast
nummerical algorithms for general traffic models.

These advantages demomstrate that our approximation method is useful for a fast and accurate traffic
analysis in ATM networks.
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I . Introduction

In Broadband Integrated Services Digital Networks
(BISDN), a wide variety of traffic will be carried by
a link of Asynchronous Transfer Mode (ATM)
system. In this system, the real-time analysis of
some  statistical distribution such as queue length
and delay is extremely important to utillize network
resources as efficiently as possible and increase the
quality of services(QoS) of all existing services as
well as those with yet-unknown characteristics that
will emerge in the future. In this paper, considering
the queue length which represents the number of
cells waiting in the queuve of a multiplexer, we
define Q(7) as the prohability that the queue length
is larger than 7y and refer it to the queue length
distribution (QLD). The tail of QLD is closely
related with the loss rate at a multiplexer with a
finite size buffer™ In BISDN, the meximum loss
rates allowed for various BISDN applications are
diverse. For instance, the cell loss rate is 107 for
videophone and 10" for TV distribution™ To
satisfy  such requirements  in various  traffic
conditions, it is desirable to have tools to analyze
QI.D in real time for general traffic models.

In  previous pa;x‘rsu'f'] we  proposed  an
approximation approach on the computation of QLD
of single server queues. The formalism was based
on two steps of mixed bound technique using the
probability generating funtion(tPGF) of the number of
arriving  customers and  service capacity. For an
arbitrary superposition of general traffic sources, our
approximate formula for the QLD is given in simple
form. The calculation of QLD using our approach is
to find the global saddle point in two parametric
dimensions consisting of the time interval and the
real parameter used for PGE's of the arrival and
SErVIice Processes.

For M+23 N\D/M/1 and M+2 NJDVDY1, we found
a good agreement between our approximation and
other calculations.” Especially, for M/M/1, the
proposed approach gave the exact solution. ™ It is
noted that NakalgawatHI made a similar approach
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using the PGF of arrival process and the Chernoff
upper bound technique. His approximation had an
upper bound chracteristic, but for some simple
models such as M/M/1 and M/D/1 his results
showed a considerable deviation from the exact
solution even after a less rigorous modification that
the calculated results were further divided by a
constant to gain the correct result for QX0).

In this paper, we apply our approximation method
to an ATM nuitiplexer. Especially, we will focus on
the QLD of the queue MMPP/T)/1 which is modeled
by feeding the Markov modulated Poisson
processtMMPP) into a single server queue with
fixed service time. In section II, we discuss some
useful properties of QLD in these queueing models
and denive relations between the QLD for arriving
customers and that for the server before service.
These relations are useful to improve our
approximation on QLD in Section Il In Section I,
we review our approximation formalism for the QLD

e
of general queues\ Hal

and propose a slightly modified
formula using the relations in Section II. In Section
IV, our theory is applied to MMPP/D/I. The
calculated results are compared with those obtained
bv a direct simulation of the system. As a special
case of MMPP/1Y1, we also discuss M/DV/1 in this
section. Finally, the conclusion of this paper is

provided in section V.

II. USEFUL PROPERTIES OF QLD

In ATM networks, user information is transmitted
between  commmunication  entities  using  fixed  size
ATM  cells. Queueing processes in an  ATM
multiplexer can therefore be modeled by (/1)1
because the service time 1s the same for all cells.
For an ATM multiplexer we observe the following
policy of service: A server measures the queue
length in a deterministic manner whether the queue
1s occupled or not. Of course, it will measure the
queve length to be zero, if the queue 1s empty. The
interval between two measurements is called as the
time slot and can be set to be equal to the service
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time. Without loss of generality, we assume that
services take place at the beginning of slots, and
arrivals during slots. Under this policy of service in
the continuous time domain, an arriving cell has to
wait in the gueue a fraction of one time slot before
a server in the idle state starts its service. In this
section, we will derive some relations between the
QLD for arriving cells(Scheme 1) and that for the
server before services(Scheme II) in a stationary
queueing systerrL

Our discussion starts with the definition of a
stable queue as follow: A queue is said to be stable
if foral 0 < e {1 and Schemes X = [ and /I,
there exists 7° such that P  N(ntX) » 1] >1 e
for t > T, where N(nt;X) is the number of events
that the queue length is equal to n in interval (0, t)
in Scheme X, and P refers to probability. For a
correct statistical analysis on the QLD of a stable
queue, the time interval of an ensemble process
must be longer than 7.

Let A(t) and S(t) be the number of arribing cells
and the full service «capacitv of a server,
respectively, in time interval(0, t). As a server in an
ATM multiplexer checks the queue at every time
slot periodically, the service process is independent
of the ammival process. Then, the utilization factor(or
the service load) may be represented by

o= < %(%l > . (1)

where<7>. denotes the ensemble average of Z
with condition ¢. A stable queue is guaranteed if p
<1

Let ¢ be the queue length at time t, then N(n. t,
II) may be expressed by

Nn.t11)=
(2)
{S(t)—A(t)—amLaz. ifn=0;
Nn—1,t1), if elsewhere.
Obviously, we have
A= 2 Nn, t 1) ;
= (3)

and

S(H= gON(n, £1D). 3)

With a series of cell arrivals producing a stable
queue, let us define Q(r, t; X) as follows:

Q(r.tx)zy%;)—nf:HN(n,a)o, (4)

=y

where Y(t) = A(t) for X = [ and Y(t) = S(t) for X
- I1. Then the QLD in Scheme X = [ and /] is
the ensemble average of Q(r,t:X), denoted by Q(r;X):

Q(”:X):<Q(7’,t;)()>,yr. D)

Equations (1), (4) and (5) give the following relation
between QLD in two schemes [ and /1,

A 1) =<Qnr t1INyr
Ruty

r

T

_ 1 o _ .
_p<A(t) n,‘va(" 1,t1)>[>r<m>
=pXr—1;1).

This relation is independent of o and @ in (2), is
valid for general queueing models in an ATM
multiplexer, and holds for all p. As Q(-1:X) = 1 for
X [ and //, we have

It is noted that (6b) is a special case of the
following  well- Known formula”  for Pu.  the
probahility  that an arbitrary cell is lost from the
queue of a finite size buffer:

p,.= L=
0SS p

If the buffer size is infinite, Poss = 0 and QO:7) =
©. Furthermore, it is easy to show that all the
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following conditions Q(r; /) = pQ(r-1; 1) and Q(r+1;
1) 2 pQ(r: 1) are equibalent.

To charactenize a queueing system under this
service policy, we define k(0) as

_ X0 1) _ X0 1)
cO=Xem = 7)

For queueing systerns with k(0) > 1, the number of
events of zero queue length found by the server of
the system is larger than that measured by the
arriving customers. As the burstiness of an arrival
process increases, k(0) increases. Hence, k(0) is an
important  characteristic  parameter of a queueing
system in the present service policy. In this paper,
we will use two formulas in (6a) and (6b) to
improve our approximation of the QLD of single
serve queueing models in an ATM multiplexer.

M. APPROXIMATE QUEUE LENGTH

DISTRIBUTION

We consider a queueing system with a single
server and cell arrivals producing a stable queue. Let
B(t) be the number of cells that received the service
in time interval (0, t). As the full service capacity of
a server S(t)=zB(t) for all t>0, we have the
following relation for ¢ the queue length at t:

a; = qo+ AN —B() =gy + A

—S(H=A(N—-S(1), 0. (8)
As (8) is true for all t>0 in all ensembles, we have

AnN= max (P [A(D—S(H—r—120] }. ®

Now we use Chemoff bound technique,[”'m
which may be stated briefly as follows @ For the
random variable U taking on integers n = 0,
+1, £2.., and all real parameters z > 1, we have
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P U®H=0] < m““ vidz 0, (10

where ¥(z) is the probability generating function
(PGF) of U and is defined as the mean value of z-

W Ae0=E 2] = S P Up=n] 2"
e an

It is noted that PGF's of two independent variables
A(t) and S(1) satisfy the following relation,

Ua sz, =¥ ,02,0¥(27",0. (12

Using (9-12), we obtain an approximate QLD, Q'(r)
for general queueing models in the continuous time

process as follows :

Q=ML (g, (20w, (2 7 Dz M),
(13a)

On the other hand, for the discrete time process,
our approximate QLD is given by

Q(n= maox {gri (P alz, )W s(271,5)

2 VY s=1,2,3

(13b)

Using (13), we cannot determine bound
charactenistics of our approximation, because both
the lover and upper bound techniques are utilized in
the formalism. However, we believe that for most
queueing models this approach gives a better
approximation than other methbds using multiple
bounds of the same bound characteristics.

To further improve our approximation of QLD, we
introduce a parameter ro in (13) and denote the
formula with Q"(r).

Q (= T {gfi{w,,(z,t)ws(z'l,t)

e (142)
2 TN (4a)
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Utllizing (6h), m may be obtained from the
requirement Q “(0:/f) - . For queueing models in
the discrete time domain, a similar formula is given
hy

Q (= maX{ M0 Ly (2.0 (2 s)
ety (14b)

It is noted that the PGIY of a traffic model is
dependent on boundary conditions at the start and
the end of a time interval. For instance, in the
derivation of the PGE of the number of arrivals
using Scheme 7, the type of cells amiving at the
start and the end of an interval must be taken into
account  statistically  to  determine  the  houndary
conditions  of arrival process, while these boundary
conditions are not so important in Scheme 1/, Hence,
the QLD in Scheme [/ is easier to caleulate than
that in Scheme 1. To calculate the QLD is Scheme
[, one mav first calculate the QLD in Scheme [/

and subsequently use (6a),
Q (n1=LQ (re1n. (15)

The calculated results using (13} in Scherre I are
generally not equal to those obtained from (15).
However, for most probability values and utilization
factors, the difference between two results is small
enough to be negligible.

Both (13) and (14) are quite simple in form and
favorable to a fast numerical calculation. Furth
ermore, they can  be easily applicable to 4
superposition of independent arriving  process, since
the PGE of a superposition of independent  arrival
process is given by the product of PGIY of individual
SOUTCES.

Let the functions in the rnight term of (9) and (13)
for given r=2() have the maximum values at t r(r)
and 7 (r), respectively. As w(r) is approximately
equal to r (1), let us ignore the difference hetween
them It is noted that A -Bt) - ¢ g In (K).

Hence, r(r may be understood as the most probable
time inteval that an increment in queue length is
greater thn r under the condition of S(7) = Bl 1)
or, equialently, N, z(r)) =0. ( 7)  increases
monotonidly as 7 increases, because the  accumula
tion of th greater number of cells in queue usually
needs thelonger tine interval. As o increases, the
nght termot (13), as a function of t, is enhanced at
larger t values, and consequently z( 7) increases.
However, for a given r, it remains finite unless the
utilizationfactor exceeds one. The characteristics of
r{ 7) semtively depend on multiplexing  conditions
of amvimg customers as well as on the tvpe of the

traffic mael.

. APPLICATION TO MMPP/D/A

In thr section, we apply our approximation
formalismto MMPP/TYT in an ATM mutltiplexer. We
also conder our  approximation  for a  superposed
MMPP/DE and MDY An MMPP is a doubly
stochasticPoisson process where the rate process is
determing by the state of a continuous time
Markow hain. In this paper. we consider a two

state Makov chain, where the mean sojourn times

in states] and 2 are n " and 1 respectively.
When thechain is in state ¢, the arrival process is
assumed b be Poisson with the mean armval  rate
A . Theservice process 1s deterministic with the
transmissin capacity of one cell per time slot.

We wi caleulate (5111 using(14b). To obtain
the QLD n Scheme 7, the calculated result of Q
(rif) 1s wbstituted into (15). In Scheme 1/, the
time  domin 1s  restricted to positive integers
representig the number of time slots, The PGE of

the numbr of arrivals in s time slots is given hyl&]

U (z,s5= nexp{l R+(z—1)A] sle, (16)

where, forthe two-state MMPP,
{7 {410 (1
R~(r._, _72),;1—( 0 M),e—(l),

2174
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and the equilibrium probahility vector is given by

T (”2,7’1).

ri+ 7
The exponential function of a square matrix cnabe

easily calculated”, On the other hand, the PGF of
the service capacity in the same interval is

Ufs(z"l,s)=(—’1z-)ﬂ. n

Substituting (16) and (17) into (14b), we have

Q” (r”): max{ min{z-(r+s*10)
’ st z:1 X4+ —X-
(18)
[ ™ (ya—xy+e™ (va—x)] ),
where
A= A 17'2+ A 2%y
7’1'+‘7’2

represents the mean arrival rate of cells in the
stationary two-state MMPP. A is equivalent to the
in this case. denote two

utilization factor p X

eigenvalues of the matrix R+(z-D A,

o= (= (k) +3ii+ Ay

i\/[ 7’1—‘7’2_37(/.(1_/12)] 2+47’17’2 },

andy = z-L

Fig. 1 shows the calculated QLD for arrivng
customers in a MMPP/I/1 queue as a function of
the queue length. A and A2 of the two-state
MMPP were taken to be 0.1 and 09, respectivdy.
We considered two sets of {n, r} = {001, 001} ad
{01, 0.1} at a fixed utilization factor o= 05 The
dashed and solid lines are the calculated resits
obtained using (18) and (15) with v = 0 and 1o
satisfying (6b), respectively. It should be noted that
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the calculated results are defined only at integer
values of r and the drawn lines are to guide the
eve. The empty circles are a few data obtained from
a direct simulation of the system. Both of the
calculated results show a good agreement with those
obtained by a simulation of the system, though the
sohd lines are slightly closer to the empty circles.
ro = (.1, and 001, the calculated kK(0) is
given by 1.15 and 135, respectively. For the same
utilization factor, both k(0) and QLD increase as r
decreases, other words, the duration of two
phases of the two-state MMPP increases. We
consider that k(0) is useful to characterize various
traffic models in an ATM multiplexer and needs a
further study.

For n =

in

10° v .
“““ Eq. (15), 1, = O
Eq. (15)

Simulation

107"

1072
-3

1077

107

Qalr; 1)

107%
-8
10 f

1077
a[(x.,x, 1= (0.1, 0.9)

0 10 20
r

1) The QLD of MMPP/I)/1 in Scheme I at o = 05.
The solid and dashed lines are calculated by
substituting (18) into (15) with ry satisfying (6b)
and 1o = 0, respectively, and the empty circles are

107

30

associated with a direct simulation of the system.

If m types of heterogeneous and independent Markov
Modulated Poisson sources are superposed at the
input of an ATM nmultiplexer, the PGF of the
number of arrivals can be obtained by the product of
the PGF of each source,

U alz,s)= ’Hn ¥ oalz, 9",

=1

where ¥4 and N; are the PGF and number of

sources of type ] MMPP, respectively.
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Fig. 2 displays the calculated results for QLD of a
superposed MMPP/d/1 queue in Scheme [/ with the
solid lines. For this calculation we used (6b) and
(14b). Using three types of MMPP, j = 1, 2 and 3,
we took 1 Ap, Ap 1A, Vrpi=103, 000, 2, 81 {003,
0000 20, 8F and {0003, 00006 200, 8001 We
calculated the Qor/Nfor two utllization factors o
0.3 and 0.8 with the number of sources I\ {1,
10, 100} and {3. 30, 2001, respectively. The empty
circles represent the results by a simulation of the
svstem. The calculated results also show a gond

agreement with a simulation of the system.

10° - .
Superposed MMPP
Stmulation 1

107"

Polsson Process

10°?
Exact Formula

1072
1074

Qlr; 1)

107
107
1077

107®

2) The QLD of a superposed MMPP/IY/1 and M/1Y/1
in Scheme I at o = 0.3 and 08. The solid lines
(the emptv circles) represent the calculated results
(a direct simulation) of a superposed MMPP/D/1,
respectively. The number of sources in three
types of MMPP are given in the text. The dashed
lines (the filled circles) refer to the calculated
results (the exact formula in (21)) of M/D/1.

As a special case of MMPP/D/1, let us also
consider the QLD of M/D/1 in Scheme I/. Since the
formula obtained in our approach can be represented
in a simple form for this queueing system, it would
be instructive to consider it in more details below.
For M/I/1, one may simply set A1=A»=A in all of
the equations driven for the QLD of MMPP/D/1.
The PGF of the number of arrivals from a Poisson
source in s time slots is given by

llfA(z, s)zeAS(Z“l). (19)

Hence, substituting (17) and (19) into (13b), we have

Q (riny= X (g e, (20)
where
r+s+r
z.‘:max{l,————“},
As

and 1o is chosen to satisfy Q (0:lf)=p. In Fig 2,
we  also plotted the calculated results of QLD of
MIDT for ¢ - 03 and 08 The dashed lines
represent QQ (ri/]) obtained using (20), while the
filed circles denote the exact formula™ of M/D/1

given by

Q(m’/):l—(l-p)’ﬁo%e”", (2D
where o is the utilization factor which is equal to
A in the present case. For a stable queue and r >
0, our approximation shows an extremely tight lower
bound below the exact solution. Furthermore, both
the exact and approximate solutions are almost
logarithmically linear in r. This results may be
uderstood if we consider a further approximation of
(201 for real numbers s. In this approximation, Q ~ (r:
1 can be simplified in the form

Q (r,//):(—};)w, @

where ¢ is the solution to the following equation,

Alo—-1)=2¢n(o), oc>l, (23)

I

1o is obtained from the conditon ¢ "=p. ¥(r) is

r+ "

7(7)275—_—1—.

and the corresponding 27 is
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RT= 07,

It is noted that ¢ is analogous to 1/o of M/M/1.
Though we did not show in the figure, we observed
that the difference between (20) and (22) is
negligible for most p < 1.

V. CONCLUSION

In summary, we proposed an approximation
approach to the QLD of single server queueing
system. Qur formalism is .based on two steps of
bound techniques, one lower bound below the exact
solution and a subsequent upper bound on the
former approximation. The calculation of our formula
for the QLD is to find a global saddle point in two
dimensions. Utilizing the PGF of arrival and service
processes independdently, the QLD of a superposition
of general input sources can be obtained within a
good approximation. In this paper we applied our
approximation method to MMPP/D/1 in an ATM
multiplexer. The calculated result showed an
excellent with either the exact solution or a
simulation result of the system. Furthermore,
numerical algorithms based on our approach provide
an extremely fast result. For instance, on a 4% IBM
PC, the algorithm for MMPP/D/1 requires a few
milliseconds to calculate the QLD in case of 2 state
MMPP. Hence, our formalism may be useful for the
real-time analysis on the QLD of general traffic in
an ATM multiplexer.
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