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EFFICIENT IMPLEMENTATION
OF GRAYSCALE MORPHOLOGICAL OPERATORS

Sung-Jea Ko’, Kyung-Hoon Lee"
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Abstract

This paper presents efficient real time software implementation methods for the grayscale morphological
composite function processing (FP) system The proposed method is based on a matrix representation of the
composite FP system using a basis matrix composed of structuring elements. We propose a procedure to
derive the basis matrix for composite FP systems with any gravscale structuring element (GSE). It is shown
that composite FP operations including morphological opening and closing are more efficiently accomplished
by a local matrix operation with the basis matrix rather than cascade operations, eliminating delays and
requiring less memory storage. In the second part of this paper, a VLSI implementation architecture for
grayscale morphological operators is presented. The proposed implementation architecture employs a bit-serial
approach which allows grayscale morphological operations to be decormposed into hit-level binary operation
unit for the p-bit grayscale singnal. It is shown that this realization is simple and modular in structure
and thus is suitable for VLSI implementation,

Tl AR S A(GSE, grayscale structuring element) & 2H= gElst TEje) A7 A g8 o
nElEE ettt AE duEFel iz GSERZRE KX basis marix® ¥ USSR 7TAR input
matrix® o8ty z Hefdh ANEE cAdH A Klocal matrix operation) 0.2 AEAl 4olEla glisd), o)
ol&3led opening®lt} closing® 29 B3 Hejdt dAbee AAIzteR g 4 gles marh AorE o
25E Be Wit S S erosion® dilation®] #¥ EFHcascade combination) 0.2 Helshd 7]2e] b
Hlal A& wWinelE Han My, 28 47 Hildeay)e] B4 Huk= 3He 2o} mek B =
woll M= Fepsr delg VLSIE F&slhy] 93 583 Weks Aok} Aoks el pbites gas
T A% g Felsl dabg prle) ol W(binary) FE|SH Ak xgtow pEsIdE, 7} ol dabars

* atefoistn dapdetst as

Professor, Dept. of Electronic Engineering, Korea University
sk A oSt HApE ety of st

R 93206

% U 19939 11H 20
1860



€ MSB(most significant bit)%E] £33 02 (bit-serial approach) 31w el bittrS Heisha] &0 o

FEZ olRoly Qrh ¥ =Rl Hejst g
Decomposition 8 Sl vlal sup Z&Holahis A

I. INTRODUCTION

Mathematical morphology 18 a powerful tool for
image analysis and computer vision. Morphological
image analysis systems have been successfully used
in many applications including obhject rocognition,
image enhancement, texture analysis, and industrial
inspection. The basic morphological operations  are
erosion and dilation. Based on these operations,
several composite operations including closing and
opening are defined Many theoretical results
concerning the operations of mathematical morpho-
logy can be found in [1]-[4].

The morphological operations can be classified
into three types of operations: 1) The most general
morphological operation, the function-processing (FP)
operation, uses the grayscale structuring element
(GSE) and accepts as inputs multilevel signals and
produces as outputs multilevel signals. i) The
second type of the morphological operation is the
set-processing  (SP) operation using the binarv SE
whose both inputs and outputs are binary signals.
1ii) The last one, the subclass of the FP operation, is
the function and set processing (I'SP) operation.
This operation uses the hinarv SE and produces a
binary signal whenever the input is binarv signal. A
variety of implementation algorithms  developed  for
the order statistic and stack filters can be utilized
for implementation of morphological FSP and SP
operations. However, these algorithms can not be
directly applied to FP operations using the GSE
which do not obey the threshold decomposition.
Moreover, FP opening/closing using the cascade
representatin(erosion / dilation followed by dilation /
erosion) requires memory storage for the first

o] VLSI & old Akt ol s152] Threshold
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e introduced.

In this pxper, we et et
software wnplementation algorithm ior the o - w
morphological TP operations. The proposed ncthied
based on a mutix representation of the composie
FP system using a basis matrix  which ix wan
extension of the basis furu:tion‘ e PrOPOSe.
procedure to derive the basis natrix for FP svetene
from any GSE. It is shown that opening and closing
are acconplished by a local matrix operation with
the basis nutrix rather than cascade operations,
elimnating  delays and requiring  less  memory
storage. In order to improve the computational
efficiency of the proposed software implementation
method, we utlize o reerasive algorithm based on
the ohservation of the hasis nutrix  and  input
matrices. The analvsis of the Dbasis matrix  shows
that the basis matix is skew symmetric and has
many redundant entries. It is also shown that most
cntries i the successive  Input  matrices at two
adjacent time indices  are identical. By eliminating
these redundancies, a fast recursive formula for the
proposed matnx operation can be obtained which can
significantly  reduce  the required computation. To
evaluate the computational efficiency of the proposed
scheme, the required number of operations for each
morphological  operators including  opening  and
closing 1s calculated. It is shown that, with the
proposed scheme, both opening and closing can be
obtained by 2N-2 additions and 2N-2 comparisons
when the size of the GSE is equal to N

A VLSl implementation architecture of the stack
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filter using the threshold decomposition was  first
proposed by Wendt et @', and Shih and Mitchet!™
modified this architecture for the implementation of
the morphological operations. In the second part of
this  paper, we propose  a  VESL  implementation
architecture  for  grayscale  morphological  FP?
operations based on the hit serial up[)machw B e
hit serial architecture  has  Teen utilized  for  the
implementation of the order statistic and stack filters.
This technicue, however, has never been applied to
P composite operators since these operators do not
obev  the superposition  principle.  The  proposed
hit-serial technique allows  gravscale morphological
operations  to be decomposed into hit level  binary
operations by a  bit modification  algorithm.  The
hardware  complexity of  this  realization  grows
linearly with the number of bits, as compered with
the  exponentially — increasing  complexity of  ihe
threshold decomposition method ™ Farthemore. (o
increase data throughput rates. a hit level pipelined
architecture is  presented,  which  can significantly

reduce the delay time.

The organization of this paper is as follows: In
Section  II, gravscale morphological operations  are
defined, and the local matrix operations for opening
and closing are explained. The fast implementation
algorthms for the composite morphological  operators
using  the matnix  representation  are  proposed  in
Section [ and the VLSI implementation  algorithm
and architecture are presented in Section [V, Finally,

the concluding remerks are presented in Section V.

II. GRAYSCALE MORPHOLOGICAL
FUNCTION PROCESSING

In this section, we first review grayscale mor
phological FP systems [1]-[4] and point out that
composite  FP - morphological — operation  can  be
accomplished by a local operation of neighborhood

input samples.

The hasic morphological operations of a gravscale
signal £ by a GSE k with size N are defined as
follows T 1et the domain of f be denoted by F and

the donain of k by A

Dilation: The  gravscale  dilation of f hv ks

denoted by g, and is defined by

gl = fDENm="TX1 rG-vk] D

<

where the maximum is selected from the set of
sums over all ze K and n—z=F.
Frosion: The  gravscale erosion of f by k is

denoted by g and is defined by

g =(fO W= """ Ant+t2-Ka] .

Z

where the minimum 1= taken from the set of

differences over all ze K and n+zF.

Opening is dilation of & eroded signal, and closing
Is erosion of a dilated signal. These  composite

morphological operations are defined as follows:

Opening *'The grayvscale opening of f by k is

denoted by gy, and is defined by

gm)=(f R(n)=[ (fERDE] (n).

Uosing  The  grayscale closing of f by k is

denoted by g, and is defined by

gl)=(f- k)= (fORCEk] (n).

Next we develop a max-min/min-max represen
tation for gravscale morphological opening/closing
The opening and closing in (3) and (4) can be

represented as follows:

Proposition 1:The FP opening and closing of

by k are equivalent to
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go(w)= T -z bz +0(2,2)] )

and

gdn)= mzin { rr?x [ An+tz—2")—b(z, 2)] }.(Sb)

where b(z,2' )= k(2) —k(2'),ze K and 2 €K
Proof : From the definition of grayscale opening,

gn=0 (fORDE] (»)
=(g.Dk)n)

= msx [ (g.(n—2)+k(2)]

= M Szt )~ K] R

< <

since min[ ,8] +c=min[ a+c¢, b+c] g

can be represented as

g (m= "L L[ f— 22

+6(z,2)] }
g.(n) can be derived similarly.

This property is also a direct consequence of the
morphological  representation  theory (Theorem 3 in
[6D. the max-min/min-max representations using
this property for grayscale morphological opening /
closing, although more complex, are faster than the

cascade representations(erosion / dilation followed by

dilation / erosion). For example, consider a GSE k=

{R(0), R(1),K(2)}.
The outputs of opening and closing, respectively,
are given by

go(n)=max{min[ An), An+1)+

+5(0,1), An+2)+50,2)] ,
min[ An—1)+6(1,0), An), An+1)

+5(1,2)] ,
min[ An—2)+8(2,0),An—1)+
+86(2,1), An)] },

and closing

gdn)=min{max[ An), An—1)

~60,D, An—-2)—-50,2)] ,

max[ An+1)—b(1,0), An), An—1)
~b(1,2)] ,

max|[ An+2)—62,0), An+1)
=b(2,1), An)] 1V,

Next, we propose a fast implementation method
for the local matrix operation of opening and closing

using matrix notation,

Proposition 1 can be expressed in a matrix form
using the input matrix, denoted by F(#), and the
basis matrix, denoted by B, as follows: The N XN
input matrix  F(xn) contains 2N—1 input sanple,
{f(n=N+1), -, An+N-1)}, and defined by

An) An+l) - An+N-1)
Fon) = f(n:--l) f(:n) ﬂn+N—2) )

An=N+1 An—=N+2) = A
6)

The NXN hasis matrix B, whose elements
consist of {b(i, N}, is defined by

b0, N—1)
b(l,N—l)

50,00 50,1)
p=| HLO KD - '
KN—1,0) 5(N—1,1) - BN—1,N—1)

[}

It is interesting to observe several properties of
this basis matrix. First, each row represents a basis
function as defined by [BlI6]. Second, since

(1,7 = k(i) —k(7),b6(i,1) =0 and
b(i,7) =—5(j,7), the basis matrix can be written

1863
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as
S0 50.1) - 60, N-1)
p_| —6(1.0) 0 - B N-1)
CHON=1) —b(1N=1) - 0
R

Note that the basis matrix is skew symmetric, that
is, BT=—B. where B’ is the transpose of B. This
matrix also implies that the total number of distinct
elements can be reduced from N down to (N7 N2,

The output of opening, gy(#n). can be obtained
by finding the maximum of the minima of each rows
from the matrix Fn)+B The output of closing,

gfln), 1s the minimum of the maxima of each

columns of the matix F(»)+B. This imple
mentation of the opening and closing  operations
using the matrix operators requires less delays and
memory storage than the straightforward two-stage

cascade combinations of erosion and dilation.

. FAST IMPLEMENTATION OF LOCAL
MATRiIX OPERATORS

In this section, a fast implementation method
based on the proposed local operation is presented fo

composite FP morphological operations.

As described in the previous section, the outputs
of opening and closing, respectively, are determined
by using the row- wise minima and the colunn wise
maxima of the matrix [Nnm+B  Expressing the
opening and closing operations in terms  of the
row-wise min and column-wise max operations

gives

g(m)=max{ Ry(n), Ri(n), - Kr, ()] , (Ga)
g/n)=min[ Cy(n), Ci(n), -, Cn-1 ()] , (9b)

where R/ (xn) and Cn), respectively, denote the

.. «th . “+h
minimum of the ¥ row and the maximum of the /"
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column of the matrix F(xn) +B,i.e.,

R.(n)= m}“[ An—i+t)+b(i ] . (10)

C,(n)= mj.‘x[ fln—j+d+bG, D] . o

where je K and JEK It can be easily shown that
the opening and closing operations in  (9),
respectively, require N 2~ N additions and N°—1

COmpAarnsons.

The proposition stated below indicates that the
outputs of the opening and closing operators at time
n can be recursively obtained from the previous

operation results

{R{n—1),0<i<N-2}{C{n—1),1=7<N—1}.

Proposition 2 The ™ row-wise minimum, R n),
and the ;% colunn wise maximum C n), of
F(n)+ B can be obtained using the following

recursive formula:

R(m=R;, | (n—1)+b(i,i—1),

=12, .N—1, (Ha)
Cin)=C; . (n—D+b(j,j+1),
i=0,1-,N—2. (11

proof For i=1,2,-- N—1,

R(nw)=min[ An—0+b0L0, f(n—i+1)
+b6(i, 1), An+N—i—1)+b(i, N—1)]
=min[ An—+b(i~1,00+b6(ii—1),
An—i+1)+b(i—1,1)
+o(i, =1, f(n+N—i—-1) +
bli, N—1)+b(:,i—1)]

=min[ An—D+b(i—1,0), An—i+1)
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+8(:, 1), fn+N—i—1)+b(i, N—1)]
+5(i,i—1)
=R, (n—1)+b(z,i—1) (12)

In the similar way, C;(#) can be obtained using

C;1{n—1) recursively.

Using this proposition, the opening and closing
operations can be redefined as

gn)=max[ Ry(n),Ry(n—1)+61,0),
“,Ryo(n—1)+b(N=-1,N=-2)]1 , (3
glm)=min[ Ci(n—1+50,1),-,
o, Cy—1f(n—1D) +(N—-2,N—1),
c Cy—1(m)] . (13b)

These equations represent a fast implementation
method of the opening and closing operations. The
calculation of Ry(#n) requires N—1 additions and

N—1 comparisons. The calculation of {R(n—1)+

b(7,i~1),0<i<N—2} requires N—1 comparison.
The total number of operations required to determine
opening and closing at each point is equal to
2N—2 additions and 2N—2 comparisons. Therefore,
the opening and closing operations using Proposition
2 is computationally more efficient than the
operations without using Proposition 2(N? —N) add-

itions and N?—1 comparisons).

To illustrate the computational efficiency of the
proposed fast implementation method, two schematic
diagrams for opening with the GSE of size three are
presented in Fig. 1. The signal flow graph of the
local matrix operator in (9a) is presented in Fig,
1(a), and the graph of the proposed recursive
opening operator in (13a) is shown in Fig. l(b).
These two diagrams show that the proposed
recursive structure has significantly less compu-

tations. For the software realization high-level
language descriptions of the proposed fast opening
and closing are given in Algorithm 1 and Algorithm
2 respectively.

Algorithm 1:The fast recursive algorithm for
opening can be realized using the high-level
language as follows:

begin (* main routine of opening#*)

(* initialization*)

for 7 =0 to N-1 do (x N:the size of GSE *)
R()= fmin (i, N—i—1);

out(0) = Rmax( );

(* recursive structure *)
for i = 1 to L-2N+1 do (* Lthe length of f *)
for ji = 0 to N-2 do
RG) = Ry+1+bIN-j~1, N-j-2);
RIN-1) = fmin(i+N-1,0);
out(r) = Rmax( );
end
function fmin(;, /) (* find the minimum of N
input samples at time i *)
begin
min = fD+b(j, O)
for k:=1to N-1do
if (Ri+k)+b(j.k)<min) then min=fi+k)+b(j,k);
return
end

function Rmax( )
(x find the maximum of R, 0<i<N—1%)
begin
max = R(0);
for /:=1to N-1do
it (R(7)> max) then max = R(i)
return max;
end
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Algorithm 2 The fast recursive closing can he
realized as follows:
begin (* main routine of closing *)
Cx initialization *)
for /1 =0 to N—1 do
C(2)~= fmax (7, i);
out(()) = Cmin ( )

(* recursive structure #)
for 2 =1 to L—2N+1 do (x/:the length of f =)
for j:=0to N—2 do
C(H=CU+1)+b0,7+1)
C(N-1)~ fmax ({+N-1,N-1)
out( )+ Cmin( )

end

function fmax (/, /)
(* find the maximum of NV input samples at time 7 *)
begin
max = A +6(N—1,/)
for k: =1 to N—1 do
if (fli+hR)+b(N—k—1,7)>max)
then max = f(i+k) +b(N—k~1,/):
return max ;

end

function Cmin( )
(* find the minimum of C,, O<i<N—]%)
begin
min = C(0);
for :=1to N—1 do
if (C()<min) then min = C(7);
return min;

end

Similarly, the fast implementation algorthm  for

closing can be easily obtained.

V. A VLS!I IMPLEMENTATION ALGORITHM
FOR GRAYSCALE MORPHOLOGY

Suppose that both the input f and the GSE k
with size N are p bitt? leveD nonnegative signals
and that the output of the FP system is also a p-hit
non negative signal. To simplify notation, we denote

v W={A,, A, A |} the set of sums or
differences for and FP operation.

The outpur g of  a gravscale  morphological
operitor with the GSE of size N can he expressed
v

g= O{A AL A, ), '

where @ 1s a4 min/max  operator  representing
aither o single  operation (mun or max),  or A
combined operation of nun and nax i of maxing
or max o of minina), and LN for erosion and
dilation, and L-N for opening  and closing.  For
exarmple, the outputs of the gravscale opening and
closing with the GSE of size N, repectively, are

given by

g,o=max{min[ A, -, Ar ] .
Apne Ao 1] s
A v Ay 1} '

minf

min [

g = min{max[ A, Ay ]
max[ Ay, A ],

max{ A, ~v.o.A 0,

I'rom (1) (D), the A, in the set W for each

L= L—1, is given by
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An—1)+K2), for dilation,
An+1) -k, for erosion,
An+i—(N+1D Li/N|,

A= +H li/nl, (15

i—(N+1)li/N!), foropening,

An—i+(N+1) LN/,
—b( Li/nl 7
—(N+1) Li/NI), forclosing,

where | 7/ N/ represents the integer part of
7/ N. In order to ensure that the output is limited to
the range [ 0, 2p—1] , it is assumed that the
set of data in the window is clipped in such a way
that A,=0 if A,;<0 and A,=2""! if Az2,-1.

The output of FP operators can be obtained by
either the threshold decomposition method [7],[13],[14]}
or the bit-serial method [9}-[12] in conjunction with
the circuit that generates the A, inputs. In the
threshold decomposition method, a p-bit grayscale
input signal is decomposed into 2°—1 binary
signals, {#,#,,£"""}, and each binary signal
are processed in parallel, and finally outputs of each
binary operation are summed to reconstruct a
grayscale output. Since the min/max operator has
the threshold decomposition property, it can be
implemented as shown in Fig. 2. Obviously, the
Boolean AND/OR circuits for binary operations can
be applied to this realization. method consider, an
example for erosion with the GSE of size three.
Suppose that the input to the min/max operator is

given by {A), A, A4,={1,3,2}). Thresholding
this input at level 1, 2, and 3 generates three binary
signals {3, £1, £} =10,1,0}, (£, £, £}=  {0.1,1},
{té‘t%'t;lg}={l,1,l}. Each binary signals are proce-

ssed in parallel through the hinary erosion operators
which can be implemented simply by using a

three-input Boolean AND operator. Finally, adding all
the outputs of each binary operators gives the output
of erosion. Next we shall show that FP operators
can be implemented by the bit-serial method incor-
porating the binary morphological operators.

Let the p-bit code words (radix-2 binary repre-
sentation)  of A, and g respectively, he
(ab,db, . al), and (B', 6% b)) where &
and b' are the most significant bits (MSB). In the
bit~senal realization, the output of each bit is
obtaned sequentially, starting with the MSB. At
each bit-level, with the exception of the MSB, the
binary input values at the level are modified before
being applied to the binary morphological operator.
This modification depends upon the outputs of the
more significant bits as follows:

Proposition 3:In an FP operation, the output of
the binary morphological operator at the j”’ hit level

is given hy

d:,+ Li1+’+ {iNfl, fordilation,

Qo Q1 Ay, for erosion,
(a, ay- )+

( ay-- C{2N71)+

“+ ( @y_y ay.,), foropening,
(a,++ ay.y)

- ( d\1V+"'+ 62‘21\/—1)

“( ay ytot ay.)), forclosing,

(16a)

where addition and nwitiplication represent the
Boolean OR and AND operations, respectively, and

cflz. =a11. for all ,0<i<L—1, and for each j,

2<5<p

1867
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]
i
i a;, it al'=b"form=1,2,,r—1
and for some »,r<<j—1,u|*b’

a’, ifa"=b"for m=1,2.,,;-1

(16h!

This  property can be proved by o slight
modification of the proof of Theorem 3 in [T In
essence, this algorithm replaces A, with o certain
value which 1s greater (smaller) than AL onee it
becomes evident that A, is greater (smaller) than
the output g, Fig. 3. shows the logic network which
produces  the outputs of the hinany morphological

operators when N=2.

The following example illustrates the bit serial

implementation of an FP opening using Proposition 3,

Example - Consider an FI opening operation of
by k given by £(0)=1 and k(1)=2. Suppose
that the input samples are given by f(n—1)= 10,
fn)=6, and f(n+1)=4. Using (13, the set of
inputs to the min/max operator for I'P opening is

obtained: W={A,, A|. A,, A} ={6.3,11.6} This

set of data can be represented by the 4 bit binary
codes:
Ag=t=(0110)

A |=3=(001D)
A,=11=(101D)
A4=6=0110)

The process of opening using Proposition 3 s
summarized in Table 1. Note that the correct output
value (0110)=6 is obtained, and A, =(0011)-3, which

is smaller than the output g=(0110)=6, is replaced
with (0000) while A,=11, which is greater than the

output, is replaced with (1111)=15.

In Fig. 4, the output & in (16a) is calculated

1868

using the hit serial realization in conjunction  with
the hinary morphological operators. In this figure, the
hinarv: morphological  operators are  implemented by
using the logic network presented in Fig. 3. And the
bt modification  logies can e implermented by
realizing the modification formula of (16b} In terms

of o Boolean equation as follows:

/ 7 !

a. = a, M+ a’ M (N

. .
Where M= @) ®Y '+ M for

V22 and M } 0. Here we represent the exclusive OR

operation by and the complement operation by
(<. Fg 5 shows the jogic network realizing the

Boolean Tfunction in (17),

The main criteria for the evaluation of anv VILSI
implementation  algorithm  are  delay  time and  the
hardware complexity. The implementation based on
the threshold decomposition property requires a logic
network decomposing @ p bit input signal o 27 —1
binary  signals,  and 28— hinary - morphological
operdtors, and 2 logic network regenerating  the
grayscale output signal from each outputs of the
hinary operators. Thus, the hardware complexity of
the implementation  based  on the  threshold
decomposition property grows exponentially with the
number of bits of the input signal. On the other
hand, the implementation based on the bit serial
approach requires one binary morphological operator,
and 1. bit modification logic networks, and thus the
hardware complexity grows linearly with the number
of bhits. Thus, the hardware of the hit seral
architecture is simpler in structrue than that of the
threshold  decomposition  based  architecture, In the
sense of the delav time, the threshold decomposition
hased implementation has the delay of

T, 7, t 1, wherer; denotes the decomposition

delay,  z,, the hinary operation delay, and 7, the
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regeneration delay. The delay of bit-serial approach
is pr,+(p—1)r,, where 17, denotes the bit

modification delay. Thus, the threshold decomposition
based implementation is faster than the bit-serial
approach. However, parallel use of the logic unit in
Fig. b can speed up the computation of the bit-senal
approach. The bit-level pipelined architecture for the
hit -serial implementation is shown in Fig. 6. The
delay experienced by data propagating through this

architecture  becomes 7,+71,,.  Therefore,  the

hit-level pipelined architecture for the implementation
of the FP operations can provide greatly increased
data throughput rate.

V. CONCLUSION

Efficient real time software inplementation me
thods for the composite FP morphological operators
were presented using the recursive structure based
on the redundancv of the hasis matrix and input
matrices. If was shown that the composite
morphological  operators  including  opening  and
closing can be accomplished by a local matrix
operation. It was also shown that, with the proposed
fast algorithm, both opening and closing can be
determined by 2N-2 additions and 2N-2 comparisons
when the size of the GSE B equal to N. This fast
implementation method can be directly extended 1o
the implementation of composite operations such as
the close-opening and open-closing operations. In the
second part of this paper, a VLSI implementation
architecture for grayscale morphological operators
was presented.  The proposed implementation
architecture employed a bit-serial approach which
decompose grayscale morphological operations into
bit-level binary operation unit for the p-bit grayscale
signal. It was shown that the bit-level pipelined
architecture for the proposed scheme can greatly
increase the data throughput rate.
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Table 1. Original input bits, modified input bits, and
output bits for the exadmple in Section 1L
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