A Steepest-Descent Image Restoration with a Regularization Parameter

정칙화 구속 변수를 사용한 Steepest-Descent 영상 복원

  • 홍성용 (영남대학교 대학원 전자공학과) ;
  • 이태홍 (영남대학교 대학원 전자공학과)
  • Published : 1994.09.01

Abstract

We proposed the iterative image restoration method based on the method of steepest descent with a regularization constraint for restoring the noisy motion-blurred images. The conventional method proposed by Jan Biemond et al, had drawback to amplify the additive noise and make ringing effects in the restored images by determining the value of regularization parameter experimentally from the degraded image to be restored without considering local information of the restored one. The method we proposed had a merit to suppress the noise amplification and restoration error by using the regularization parameter which estimate the value of it adaptively from each pixels of the image being restored in order to reduce the noise amplification and ringing effects efficiently. Also we proposed the termination rule to stop the iteration automatically when restored results approach into or diverse from the original solution in satisfaction. Through the experiments, proposed method showed better result not only in a MSE of 196 and 453 but also in the suppression of the noise amplification in the flat region compared with those proposed by Jan Biemond et al. of which MSE of 216 and 467 respectively when we used 'Lean' and 'Jaguar' images as original images.

잡음이 섞인 흐려진 영상을 복원하기 위해 정칙화 구속조건을 사용한 steepest-descent 영상복원방법을 제시하였다. Beimond 등에 의해 제시되어진 기존의 정착화방법의 경우 복원과정에서 발생가능한 잡음의 증폭과 악조건이나 특이점등에 의해 발생하는 오차를 억제하기 위해 사용하는 정칙화변수의 값을 실험적으로 설정하여 영상의 복원에 적용함으로써 잡음의 증폭과 파문현상 등을 초래하는 등 복원효과가 줄어드는 단점을 나타낸다. 본 방법은 복원영상의 각화소값으로부터 적응적으로 구속조건의 값을 구하여 훼손된 영상의 복원에 적용함으로써 잡음의 증폭을 억제하고 파문현상을 줄일 수 있는 장점을 갖는다. 또 복원결과가 원래의 해와 근사하거나 발산할 경우 자동적으로 반목을 멈추는 종료규칙을 제시하였다. 실험결과를 통하여 'Lena' 영상과 'Jaguar' 영상을 원영상으로 사용하였을 경우 제시된 방법은 평편한 영역에서의 잡음의 증폭이 억제되었을뿐 아니라 파문현상도 줄어들었는데, 이것은 우리의 사각이 갖는 평면에서의 잡음의 가시도에 의해 시각적인 효과가 개선되었음을 알 수 있고, 영상의 전반적인 평균자승오차도 Biemond 등에 의한 방법을 각각 216과 467인데 비하여 본 논문에서 제시된 방법의 경우 각각 196과 453으로서 더욱 낮은 평균자승오차를 얻을 수 있었다.

Keywords