A generalization of Price’s theorem with constrained
non-Gaussian inputs
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Abstract

Price’s theorem is generalized for general zero-memory nonlinear functions when inputs are
drawn from a sum, called the constrained non-Gaussian, of two or more mutually independent
processes of which the first is the Gaussian. An example is given to illustrate the applicability of

the generalization.
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1. Introduction functions, From Ref 1, the statement of the the-
orem is as follows :
Price’s theorem'! has been shown to be useful “Assume x|, ¥, -, %, to be random variables
in evaluating the expected values of the products from a Gaussian process whose nth order joint
of the outputs occuring when jointly Gaussian probability density is given by :

inputs are subjected to zero-memory nonlinear

Yy aee - ~nf2 1/2
ESEIPN o At £ it plxy, xp o, x,) = (21) 7M2M,,|
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where |M,| is the determinant of M,=[p,.] and

Py =%, X; —X,X; is the correlation of x, and «x,.
The means of x, and x, are x, and ¥, respect-
ively. M,; is the cofactor of p, in M,,.

Let there be n zero-memory nonlinear devices
(linearity of course being included as a special
case) specified by the input-output relationship
flx), i=1, 2, -+, n. Let each x; be the signle in-
put to a corresponding f,(x), and designate the
nth-order correlation coefficient of the outputs as :

R=[1 f,tx) @

where the bar denotes the average taken over all x;.
Then, with weak restricitions on the f,(x), we have
the following theorem for the partial derivatives of R
with respect to the input correlation coefficients :

N

: mOresa
= (5 )

. N (\I‘V Eimkm)
[ 1/ m= (xi)] (3)
i=1
where 7,, and s,, m=1, 2, ---, N, are integers lying

between 1 and #, inclusive, and are not necess-
arily distinct. The k,, are positive integers, with k
=§:;\;,;1 k. € 1s the number of times ¢ appears
N (#, Su). d,,, is the Kronecker § function. 8,
=1 for 7,=s,, 0 for #, #s,,. The symbol f ' (x,)
denotes the gth derivative of f,(x), taken at x,.

Furthermore, not only is the above theorem
true for inputs having an nth-order joint Gaussian
distribution but it holds true only for such inputs
if the f,(x) are allowed to be of general form."

In a later correspondence'”, Price noted that
the Gaussian random variables in (1) should have
been stated to all be of unit variance and his orig-
inal teorem was extended to the problems involv-
ing input processes of a much broader class than
the Gaussian, It was stated in Ref. 2 that if the
input variables are drawn from a sum of two or

more mutually independent random processes of
which the first is a process having the set of cor-
relation coefficients {p, } (j, k=1, 2, -, #) and
unit variance, then the result (3) is true so long
as the first process is Gaussian, irrespective of
the statistics of the other processes. In particu-
lar, when the first 1s Gaussian, the sum will be

called the constrained non-Gaussian process in

this paper.
While in Refs. 1 and 2 they consider only separ-
ate forms f(x;) (j=1, 2, -, n) for zero-memory

nonlinear functions where x; is j-th input random
variable, there are many papers % in which a
general zero-memory nonlinear function f({x, x,,
-+, x,) is considered. In Refs. 3 and 4, a proof of
the sufficient part of Price’s theorem was given
for the special case n==2. In Ref. 5 a generalized
version of Price’s theorem was developed by
proving its sufficient and necessary (or converse)
part for general n. A different method was used
in Ref, 6 to obtain the same result as that in Ref,
5. While the developments in Refs. 1-3 appeal to
Laplace integral expansions for the nonlinear
function, those in Refs, 4 and 5 use less restrictive
conditions on the nonlinear function. However, in
Refs. 3-6, the derivatives of the expected value
of the output were with respect to the correlation
coefficients of the whole input process, not with
respect to the correlation coefficients of the first
process of the constrained non-Gaussian input.

If we want to determine the expected value of
the output of the general zero-memeory nonlinear
function when the input is Gaussian, then we can
use the result of Ref, 5. There is no way to do so,
however, when the input is the constrained non-
Gaussian. Exceptionally, if the general zero-
memeory nonlinear function is of the separate
form and the correlation coefficients of the first
process of the input are given, we can use the
result of Ref. 2. Thus a method is desired that
extends the result in Ref. 2 for general zero-memory
nonlinear function, When the input or the first
process need not have unit variance, it is general
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to use the set of covariances than correlation
coefficients. If we consider a case where the
covariances A,,(7 # k) of the input are equivalent
to those of the first process of the constrained
non-Gaussian 1nput for a general zero-memory
nonlinear function, a generalization of Ret, 2 will
be very uselful in evaluating the expected valuc
of the output.

In this paper. the result in Ref. 2 1s generalized
for a general zero-memory nonlinear function
when the mput 1s constrained non-Gaussian, Since
the jointly Gaussian input can be considered as a
special case of the constramed non -Gaussian, the
first result in this paper naturally leads to the
generalization of Ref. 1 which comncides with the
result i Ref. 5 for inputs having unit variances.
In addition, the theorem in Retf. 5 s generalized
to include mputs with arbitrary variances, In the
proofs of these generalizations, lLaplace mtegral
expansions are avoided for the general zero-memory
nonlinear function by assuming some conditions
on the function as in Ret, L or 5.

This paper 1s organized as follows, In Scction
11, Theorme [ is a generalization of the resull in
Ref. 2 and Corollary 1 1s @ generalization of the
result i Ref. 1. Theorme 2 Section I can be
considered as a generalization of the result Ref. 5.
An example of the lincar rectifier correlator is
shown 1n Section 1 to tllustrate the apphcability

of the theorems.

Il. Generalization of Price’s theorem

We assume that x,, g,, and w, (7= 1. 2, -, »n)
are random variables and that f{x,, x, -, x,) 18
a general zero-memory nonlinear function and
suitably conditioned as in Ref. 4 for n-dimensional
case. Let N==|x,, x, -, x,]/ (1 stands for the
transpose operation), (; == [gl. J- RN g,,]’, and 1
=y, ws, . w,|. We denote the joint prob
ability density functions of x;, g, and w; by b,
(), p, (), and p,(-), respectively.

Theorem 17 Let A, ;i be the covariance ot g, and
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g, for j, k=1, 2, -+, n, Then,
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if and only if 1) x;=g,tw,; 2) g, are jointly
Gaussian, and 3) £; and w; for and J, k are mutually
independent, where o,, denotes the Kronecker
delta function and £%- the expectation of 1-5,
Proof. Since g, are jointly Gaussian, their joint

characterstic function @, 1s

n n

| EAA .
b, (1) = exp(* Lo :-‘ Ag e 1Y w;m, ) (5)
i vk FER) /

where [ lauy. w., -, ). 1= /~1, and m,
denotes the mean of g, The independence of g;

and wy vields

PN p (N ) xp (X)) (6a)
14
GO () b (U7) Dy (1T (6b)

where * denotes the convolution, and @, and @y
are the characteristic functions of X and W,
respectively. Using (6) and (5), we obtain
CEL N

‘jku,/k

Iz . ' ’ v
Ay e ‘ R SO p (XD dy

: ‘.A{; ) |70 (,21{) n'\‘R.d),,(l')d)u(l')exp(—il".\')dl'] ax

cexpl—il 1 X) d(']d.\'

1 o LX)

Since
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X apY) ) ep ) .
ET p(X) ,,llTr 2% / iy Morany) k (8)

from (6a), and
¢ f1X) , . L ap N

Im - — p (&)= lim f(X)-——— =(foranyj k
X R € Xy (9)

under the assumption that f(X) is suitably con-
ditioned as in Ref. 4, we obtain

. 0 fAX . ¢ plX) .
lim rJ;L) pX)=Iim f(Y) ! (ﬁ\ = () for any j. k
ot X Xk Xk

(10)

Integrating (7) by parts and using (10), we have

& ELF (X)) 1\ & FX) , .
LEV A L e A (X)) dN
d Ao ik ( 2 ) f’\" ﬁx]- O xy f)\( .
:(,l, )™ 15{ RarAny } . (11)
2 ¢ X506 X

Let us now prove the necessary part, From the
right hand side of (4), we have

(L | Ld0)

O x; @ xg

- [R" f(\)[(;;) n j}\,,,( ‘1) )n,. (— 1,10 ® (L)

- exp( —iUTX)dl'] dX. (12)

Similarly, the left hand side of (4) becomes

RAVAC YL
(‘?lg’]‘k
e L e 20
o () T S vt

(13)

Since (4) is an identity for f(X), equating the
right hand side of (13) with that of (12) vields

_‘(j‘fD,\v(l.r) ___(i )»,k( —u;u) ® (1), (14)

Integrating (14) for all pairs (j, k) and taking
into account that A, ;x =2, ,,, wWe have

log @ (1) =~ -+ & S Ayt Iy ()
:wgmﬂW+[“iiuma+%NW] (15)
Jot 7

where A {1') is an arbitrary function independent
of A, ;x and @, (") the characteristic function of
jointly Gaussian random varibles defined in (5).
If we let the bracket in (15) be log ®,({’), (15)

7. k are mutually independent. This completes
the proof of Theorem 1.

Theoren: 1 18 a generalization of the result in
Ref. 2, since the function f(X) in (4) clearly
includes the functions of the form £ (x)) f,(x.)-
S, (x,) considered in Ref, 2 as special cases.

Coroflary 1 Let X, be the covaniance of x; and

x, for j. k=1, 2, -, n. Then,

CEVIXN 1y ¢
e R Rt k=19 5
T () {FLP%meLk L2 . n (16)

if and only if x, are jonintly Gaussian,

Proof, In Theorew 1, 1f w; =0, then x, fg_,(']'T
1, 2, -+, n). Thus the proof of the sufficient part
of Coroflary 1 1s obvious from that of Theorem 1.

Let us prove the necessary part of Corollary 1.
If we follow the proof of the necessary part of
Theorem 1 with A, ;. replaced by A, j., then we
obtain

n

Y A | U (D)

k=t

log & (1) = [ -

4

1
2

where h.(L") is an arbitrary function independent
of Ay . let y, and z; be the random variables
associated with the bracket and A,(07) in (17),
respectively, Then it follows that x, rv"_y]—%z,

where v, and z, for any j, k are mutually indepen-

341



s Lk 942 Vol.19 No.2

dent. From (5), it is easy to see that y, are
zero-mean jointly Gaussian with covariances A, .
Since x, have the covariances A, ; by assump
tion, the covariance of z; and z, must be zero for
all j. k. Therefore z; should be constants, which

are the means of x;, m.. Thus we have
l’l’(() :Zi U, m,\) (18)

which states, together with (17). that x, are jointly
Gaussian. This completes the proot of ¢ orollary 1.

Corollary 1 1s a generalization of the result of
Ref. 1 and different from that of Ref. 5 1n that
the covariances A, ;; are involved in (16) while in
Ref. 5 only the covariances A, ;, for j # k are con
sidered under unit-variance input assumption,
Moreover, the following Theorem 2 tells us that
Corollary | also holds true by doing without (1/2)7
in (16}, 1.e.. considering only A, ;. for j # k.

Theorem 2t Let &, be the covariance of x; and

x, for j, k=1, 2, ---. n. Then,
I N oY) .
= J ) - { ¢
O Ak | o x; 0 for y #k (19)

if and only if x; are jointly Gaussian,

DProof © The proof of the sufficient part of The-
orem 21s obvious from that of Corollary 1.

Let us consider the necessary part. 1 we follow
the proof of the necessary part of Theorem 1 with
A, jx replaced by A, ;. we obtain

SO

- = (—u,u) Oy () for j # k. (20)
« l\',/k

from (14). Integrating (20) for all 7 # k and taking
into account that A, ;% Ayx, gIVC

log (1) = =Y

7k

Aojttjtgt+ hy(l) (21)
where k(") 1s an arbitrary function independent

of A, ,x for j # k. From the properties of charac

teristic function, we obtain
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Aoy ™ "f’:‘d);\\(,i(') L mmE = __L)h‘;(g;)

5 -
oul ¢ : du; ooy

(22)

where m,, denotes the mean of x; andzf the nxl
all zero vector., From (22) it follows that h,(l7)

should be of the form

= L e e (23)

Fa i

where A7) 15 a function which does not have
terms containing #5, f—1, 2, .-, n, Substituting
(23) 1n (21) yields

log &\ (1) = L” 1) _\i i luk”ﬂdk] +ha(0), (24

Except that A,(U') may depend on A, (24) is of
the same form as (17). Therfore we have 2,(U") =
13 LU, as in (18), which states together
with (24) that x, are jointly Gaussian. This
completes the proof of Theorem 2.

When the inputs are unit-variance, we have the
result of Ref. 5 from Theorem 2. Note that the
proot of Theorewm 2 1s accomplished by using the
properties of characteristic function and 1s sim-
pler than that given in Ref. § for unit-variance in-

put case,
lIl. An example

We consider the situation where n=2 and
assume the followings 1 1) =g, +w,(j =1, 2),
2) all random variables are zero-mean, 3) g, and g
. are jointly Gaussian with A, :aﬁ,l, Ag.g-g:aﬁ,z,
and A, .= A, for notational simplicity, and 4) g;
and w, (7. k=1, 2) are mutually independent,
For convenience, we assume that w, and w. are
mutually independent so that A, = A,.

[et the probability density functions of w; and w,
be the € contaminated (or e-mixtured) Gaussian''
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Pwl(wl) "—’811]le(0, 0'5,“) + ClzNw,(O, G'E,I!) (25a)
and
pwz(wz) = €91 JVW’(O, 0';2‘/“) + £ [wa(o. G;i'u) (ZSb)

where g;=1—€,(0<&,<1), & =1—6x(0< &y
< 1), and N,(m, o) denotes the Gaussian density
with mean m and variance ¢ Then the joint
probability density function of x; and x, becomes

b, (11, %2)

S €, £ N, (0, 02 IN, (0, 02 )

— A ( 2 2
= Nex 10, Oy Ogy A)* jV wy w0y

2
-

k=1

(26)

where Ny, (m o} o 1) denotes the joint
Gaussian density with identical mean m, variance
o? and ¢% and covariance A. Since the brace in
(26) is separable with respect to x| and x., (26)

becomes
by, . (21, x2)

=Y 61, €l 10 02, 02 40N, (0, 07 1o N (0, 02,)

2 1 o
=3 Y £ €0 Ny, (0, (02 + 0} ), 05, ) * N0, ap,)

£ gy

2 2
=T ¥ &) 60 Ny (0 (62 +0b ), (62 02,0, 4,).

;’2 Wy "7
(27)

Now, we consider the linear-rectifier correlator'?,

Le.,
Slxy, 1) =[x+ 2] — |y — x| (28)
and use Theorem 1 to evaluate F{f(x), x,)i It is

easily shown that

&S, xy)

- = 216(x, +xy) +5(x)—xu) . (29)
0x; 0%y

Using Theorem 1 togeher with (27) and (29), and
following straightforward caculations yield

LEATACINE AL GG
& lg - \/T? ,‘,_1 )é_‘ 151] Eak
1 1
(30)
Vbt Ay Vbj—2A,

where b= (o3 +o§u+ai,“+o;{.u)/2, Integrating
(30) with respect to A,, we have

0

. 1 -
Eiflx, xo)i= = ¥ ¥ g en
VT ek

(ot — Va1, ) (31)

noting that the integration constant becomes zero
because Filx;—x|t=FEllx +x,} when a,=0.
As a special when g, =€, =0, of, =0, k=1,

2), and o} = o}, *= 1, the result (31) becomes that
in Ref. 3.

IV. Conclusions

In this paper generalizations of Price’s theorem
were considered for various environment, First, a
generalization i1s considered for constrained non-
Gaussian inputs and general zero-memeory nonlinear
functions. A special case of the generalization
was shown to be useful for Gaussian inputs with
arbitrary variance and general zero-memory
nonlinear functions. Second, a modification of the
generalization was considered for Gaussian inputs
with arbitrary variance and general zero-memory
functions.
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