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Influence in Testing the Equality of Two Covariance Matrices
Myung Geun Kiml

Abstract

A diagnostic method useful for detecting outliers in testing the equality of two
covariance matrices is developed using the influence curve approach. This method
is easily generalized to more than two covariance matrices. A sample version for
the influence measure of detecting outliers is considered based on the empirical
distribution functions. The sample version includes as its component terms the
well-known test statistic for detecting one outlier at a time introduced by Wilks
and its generalization to the two—-group case.

1. Introduction

A first step in comparing two covariance matrices is usually to check whether they are
equal or not. Several procedures are available for testing the equality (see Seber, 1984,
Chapter 3). However, no direct method of identifying influential observations in testing the
equality of two covariance matrices is available. In such a case it will be interesting to
develop a measure of detecting influential observations.

The influence curve introduced by Hampel (1974) has been used for detecting outliers in
some areas, for example, principal component analysis (Critchley, 1985), discriminant
analysis (Campbell, 1978) and regression diagnostics (Cook and Weisberg, 1982). The
influence curve is usually defined for a parameter which can be expressed as a functional
of the underlying distribution function, and it measures the effect of a point (an
observation) on the parameter of interest.

One of test statistics for the equality of covariance matrices is the likelihood ratio
statistic. This test statistic is a function of sample covariance matrices, and a sample
covariance matrix is a functional evaluated at the corresponding empirical distribution
function. Thus we can define an appropriate functional so that its influence curve can serve
as a diagnostic method of identifying influential observations in testing the equality.

In this work a measure of identifying influential observations in testing the equality of
two covariance matrices is developed using the influence curve approach. This influence
measure is naturally generalized to more than two covariance matrices. A sample version of
the influence measure is considered, and it includes as its component terms the well-known
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test statistic for detecting one outlier at a time developed by Wilks (1963) and Wilks'’

statistic generalized to the two-group case. The influence measure can be used as a
diagnostic method of detecting outliers.

2. Test of the equality of covariance matrices

Two independent random samples {x1,"**,xn,} and {y1,'>*,yn,} are drawn from p

-variate normal distributions NN(Ui1, £1) and N(Uz, Z2) respectively. The X are
assumed to be positive definite.

Let x and Si1 be the sample mean vector and the sample covariance matrix with

divisor M1 respectively. Similarly define y and Sz for N(itz, X2).

We consider the hypothesis of the equality of two covariance matrices:
Ho : 21 = 22,
and allow the mean vectors to vary from group to group. The alternative hypothesis is that

no constraint is imposed on the whole parameters. Under both hypotheses the maximum
likelihood estimators of M1 and MWz are x and ; respectively, and that of the common
covariance matrix under Ho is r1Si1+r2Sz , where ri = ni/n+ (i = 1,2) and
n+ = n1+nz. Under the alternative hypothesis the maximum likelihood estimators of 2;
are the S;. Hence it is easily shown that the likelihood ratio statistic for testing Ho is
given by

n+/2

{ 1S117S21™ }

lr1S1+r2S2l

(for more details, refer to Seber, 1984). As a test criterion, it is thus enough to take

1S1171S21™ / 1r1S1+r2Sal.
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3. Influence curve for the likelihood ratio criterion

For the purpose of detecting influential observations in estimating parameters, a common
way is to use the influence curves for those parameters. Let 6=08(F1,F2) be a

parameter expressed as a functional of F1 and [F2. The influence curve for 8 is
determined by perturbing only one of the distribution functions. The perturbation of the
distribution function F1 at z can be written as F1(g) = (1-&8)F1+&8, for 0<e <1,
where 8 : denotes the distribution having unit mass at the pointz. The influence curve

for 6 at z (Hampel, 1974), when F1 is perturbed and F'2 is kept unchanged, is defined
by

. B(Fq(e),F2)-0
lim
=0 £

and it measures the instantaneous rate of change of 8 as F1 moves infinitesimally
towards © .. A large absolute value would mean that the point z has a large influence in
estimating the parameter 8(F1, F2). If 6(F1(€),F2) can be expanded in a Taylor series
of €, then the influence curve for 0 at z is the coefficient of the first order &€-term in a
series expansion of & (Fi( &), F2). The other case is similarly defined.

Before trying to get the desired influence curve, we need to define an appropriate
functional which can reflect the effect of a perturbation on the likelihood ratio statistic. Let

u=pw(F) and X =X (F) be functionals of the distribution function F representing the
mean vector and the covariance matrix respectively. We denote by F'; the distribution
N(ugi, £) for i=1,2. Then Hi=W(Fi) and X:= Z(F)). Let Ty=X n(F1,F2) be
the functional of the distribution functions I defined by

Su o= miZi+n23y,

where M1+7T2=1 and ®; >0 for i=1,2. Here each 7; represents a population proportion
and is estimated by r; for sample versions of the influence curve. The functional 2H

reduces to the common covariance matrix whenever the null hypothesis Ho holds. Define a

functional
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n n
DT P

9(F1,F2)= |2H|

When the 7; are replaced by the ri, the value of 8(Fi1,F2) at the empirical
distribution functions yields the likelihood ratio criterion as in Section 2, and therefore
8(F1,F2) is a reasonable functional for performing the influence analysis of the likelihood

ratio statistic.
Only terms of order £ will be retained in the computation of the influence curve since

the influence curve is determined by the term of order £. To get the perturbation of 0,
we derive the perturbations of its numerator and denominator separately and then combine

the two perturbations. First we consider the case in which F1 is perturbed at zand Fg

kept unchanged. The perturbation of the numerator of 08 is entirely determined by that of
21. The perturbation 2(F1(€)) of X1 becomes

S(FieN=21+e {(z-u) (z-un)"- X1} +0(e?).

The determinant of Z(F1(€)) can be written as

| S(Fi(enl = 131 ] | L+eSi{ (z-m)(z-uD)T-31} | .
Since p+Wl=HI%(1+7;) , where the 7 are the eigenvalues of W,
1,+e3 1 (z-u1)(z-n1)T=31} is equivalent to Il %1(1+€a;), where the @; are the
eigenvalues of 21 {( z-11)(z-11)T-21} and it is a polynomial in e of order p. For a
sufficiently small &, Taylor series expansion for 11p+8211{(Z—U1)(Z—H1)T—El}| is
1+£3%; a;+0(e?) and X f1a;is just the trace of S1{ (z-p)(z-n1)T-31}. After
applying Taylor series expansion once again, we get

ISCFUEN™ = 2P [1+ena{ (z-un 21 (z-u1) -p}H+ O(?).

The perturbation of Zg is
Su(F1(e),F2)=3g+em{ (z-u(z-un)7 -Su}+0(e?).

For a sufficiently small &, (Jp+&W) '=1,-eW and thus a Taylor series expansion
yields

SH(F1(&),F2) ' = [Ip+emiSi{ T u-(z-u)( z -u1) T} 34 +0(?)
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from which an expansion for |[Zg(F1 (€),F2)]™! becomes
Sa(F1 (8),F2)I ™ = Bl (1+2m 320 + O(e),

where the h; are the eigenvalues of SH{SH-(z-m1)(z-11)T}. Note that the sum of the

eigenvalues A; can be expressed as
3Shi=p-(z-un) T3 (z- ),
£

An expansion for 6(F1(£),F2) is thus given by
8(F1(2),F2) = 0(Fy,F2){1+em( z-u) TSt -S#)(z-un)} + O(e?)

from which the influence curve for 8(F1,F2) is obvioulsy determined. The influence curve

includes T18(F1,F2) as a multiplicative factor which is redundant for analyzing the

influence of observations using its sample version. As an influence measure, it suffices to
consider

(z-uDTCET -2 (z-u)

which will be denoted by IM1(8(F1,F2),z). This influence measure is proportional to
the influence curve divided by the functional of interest and it can be considered as
representing a relative rate of change of 8(F1,F2) due to the perturbation of F1.

By the symmetric role of the distributions in the functional 8(F1,F32), the influence
measure, when F2 is perturbed at Z, can be easily found as
IM2(8(F1,F2),z) = (z-u2)" (32'-3H)(z-12).

The process of deriving the influence measure in the above is easily extended to the
case of more than two covariance matrices.

4. A Sample version

Three sample versions of the influence curve may be considered as in Critchley (1985):
the empirical influence curve, the deleted empirical influence curve and the sample influence
curve. The last two needs much more computation than the first in our case. However, the
exact numerical computation is possible for the sample influence curve. Here we consider
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only the empirical version of IM;(0(F1,F2),z) which is based on the empirical

distribution functions and include the definition of the sample influence curve to compare
both sample versions numerically in Section 5.

Let F\; be the empirical distribution function based on the corresponding random sample
of size ni. Then we have W(F1)= x,and 3(F1)=S1, and similar results for F2. The

empirical influence measure at Xm is obtained by substituting the F\, for the Fi and
Xm for z, and it becomes

IM1(B(FL,F2),xm) = ( xm- %) {ST - (r1S1+1252) 1} xm— x).

The empirical influence measure includes interesting termmns. The  term
( Xm- X)T ST ( Xm- X) has been used as a test statistic for detecting outliers (Wilks,

1963). This is also equivalent to the likelihood ratio statistic for the mean slippage model
(for the definition of mean slippage model, refer to Caroni and Prescott, 1992). This
one-sample Wilks’ statistic can be viewed as a test statistic for the two-group mean
slippage model, when the alternative hypothesis holds, focusing on the detection of outliers

in the x-sample. The term (Xm-— )T (r1S1+1282) 1 ( Xxm— X) can be interpreted as
a statistic for detecting outliers in the two-group case when Ho holds and our interest

centers on the detection of outliers in the X-sample. This interpretation may be

ascertained by deriving the likelihood ratio statistic for the two-group mean slippage model
under the constraint of the equality of covariance matrices (see Appendix for its derivation).

If S1 is equal to Sz with probabillity one, the null hypothesis absolutely holds. In this
extreme case any observation does not have an effect on the likelihood ratio statistic.

In a manner similar to the above, we can get a sample version for IM2(0(F1,F32), z)
as
(ym= ¥)T{S2' - (r1S1+r282) "} ym= y) .
To investigate the effect of the X-sample, the sample influence curve for 0(F1,F32) at
X m can be defined by
SIC1=(n1-D{8(F, F2)-6( F1-m,F2))}
where F 1,-m is the deleted version of F 1 with the mth observation X m deleted. The

sample influence curve SIC2 for the ¥ -sample can be formulated analogously.
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5. Example

In Table 1 we have cost data on three variables for two kinds of milk transportation: 36
measurements for gasoline trucks (Group I) and 23 measurements for diesel trucks (Group

ID. Three variables are x1= fuel, X2= repair, x3= capital, all measured on a per-mile
basis. This data set is taken from Johnson and Wichern (1992, p.276). The data for Group I
was analyzed by Bacon-Shone and Fung (1987), and Caroni and Prescott (1992). Their
conclusion is that it is reasonable to view observations 9 and 21 as possible outliers.
Numerical computation needed in this section is carried out using Splus on IBM PC. The
sample mean vectors are X = (12.22, 811, 959) and -3_/— = (10.11, 10.76, 18.17). The

respective sample covariance matrices are

S1 = |1202 17.06 464 0.73 2473 7.35

283 464 1358 2.26 735 44.63

22.37 12.02 2.83] [4.17 0.73 2.26]
Se = .

From these, we have 8 ( F1, F2) = 0.566.

Table 2 includes some numerical results. The mth value in the second column with a

heading IM shows the influence of the corresponding observation on the likelihood ratio
statistic for testing the equality of two covariance matrices for each group and that
multiplied by 0.345 for Group I or by 0.221 for Group Il gives the value for the influence
curve. The third column with a heading W1 includes the values for the Wilks’ likelihood

ratio statistic for detecting a single outlier for each geoup. The values in the fourth colum

with a heading W32 are those for the Wilks' statistic generalized to the two-group case
with the common covariance matrix. The fifth column with a heading SIC represents the

sample influence curve values divided by 0.345 for Group I and by 0.221 for Group II so
as to compare them with the empirical influence measures.

We will inspect the influences in Table 2 to get information about highly influential
observations using the stem-and-leaf displays of the influences. The third and fourth
columns in Group 1 show that observations 9 and 21 are possible outliers violating the
normality assumption under both hypotheses, and the second column shows that
observation 25 in addition to them is also highly influential in testing the equality of the
covariance matrices. The result for the sample influence curve yields the similar conclusion.
For Group II, observation 11 is highly influential against the normality under the null
hypothesis, no one under the alternative hypothesis, and observation 16 in testing the
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equality.

This result shows that one method of detecting outliers for one purpose cannot guarantee
the detection of outliers for another purpose, because an observation can be an outlier for
one purpose but not for another purpose.

Appendix

In this appendix the problem of the two-group mean slippage model with the common
covariance matrix is formulated and the likelihood ratio statistic for that model is derived.
The two-group mean slippage model can be defined by specifying two hypotheses as

follows. The null hypothesis Ho is that X1,"**,Xn, come from N(U1,2), and ¥1," ", ¥n,
from N(12,2), and the alternative hypothesis H1 is that one observation from the first
group, X1 say, comes from N(H1+a,2), the others Xz,'*",Xn, from N(U1,2) and
V1, -, ¥n, from N(li23). Here the slippage parameter @ is unknown. Let 3g, denote

the maximum likelihood estimator of 2 under H; for each i(=0,1. Under the null
hypothesis, the maximum likelihood estimators are

Tl1=;, ﬁ2=;,- §H0=r151+r252

and those under the alternative hypothesis are

1= (n1 x-x1)/(m-1), fe- v, d=mx1- x)/(m-1)

Su = nS1+raSe-{ny/n-(ni-D} x1- x)(x1- x)T.

Under Hji, note that ﬁl is the mean for the empirical distribution function based on

the random sample of size ni1—1 with X1 deleted and that xi1= Tl1+a. Thus it is easy
to show that the likelihood ratio statistic is a strictly increasing function of

|SH1|

l 21{0'

=1-{n/n-(m- D} x1- )T MS1+r2S2) " x1- X).
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Table 1. Milk transportation cost data

Group 1 Group II
No. x1 X2 X3 No. X1 X2 X3
1 1644 12.43 11.23 1 850 12.26 9.11
2 7.19 270 392 2 742 513 17.15
3 992 1.35 9.75 3 10.28 3.32 11.23
4 424 578 7.78 4 10.16 14.72 599
5 1120 505 10.67 5 12.79 417 29.28
6 1425 5.78 9.88 6 9.60 12.72 11.00
7 1350 10.98 10.60 7 6.47 8.89 19.00
8 1332 14.27 9.45 8 11.35 9.95 1453
9 2911 15.09 328 9 9.15 294 13.68
10 1268 7.61 10.23 10 970 5.06 20.84
11 751 580 8.13 11 9.77 17.86 35.18
12 9.90 363 9.13 12 11.61 11.75 17.00
13 1025 507 10.17 13 9.09 13.25 20.66
14 1111 6.15 761 14 853 10.14 17.45
15 1217 14.26 14.39 15 8.29 6.22 16.38
16 1024 2.59 6.09 16 15.90 12.90 19.09
17 1018 6.05 12.14 17 11.94 569 14.77
18 8.88 270 12.23 18 954 16.77 22.66
19 1234 773 11.68 19 10.43 17.65 10.66
20 851 14.02 12.01 20 10.87 21.52 2847
21 2616 17.44 16.89 21 7.13 13.22 19.44
22 129 824 7.18 22 11.88 12.18 21.20
23 1693 13.37 17.59 23 12.03 9.22 23.09
24 1470 10.78 14.58
25 1032 516 17.00
26 898 4.49 4.26
27 9.70 1159 6.83
28 1272 863 559
29 9.49 216 6.23
30 822 795 6.72
31 1370 11.22 491
32 821 9.85 817
33 1586 11.42 13.06
A4 9.18 9.18 9.49
3B 1249 467 11.94
36 1732 6.86 444
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Table 2. Influence measures

Group 1 Group I

No. IM Wi W. SIC No. IM Wi W2 SIC
1 -026 121 147 -040 1 -160 257 417 -143
2 043 328 28 036 2 128 29 162 162
3 1.00 347 247 096 3 -164 286 450 -146
4 -101 336 437 -119 4 -333 492 825 -333
5 033 095 063 020 5 -412 703 11.16 -406
6 039 138 099 026 6 -119 158 277 -099
7 011 052 041 -002 7 251 347 095 289
8 112 328 216 107 8 008 08 073 033
9 -3881815 2202 -268 9 -093 268 361 -0.69

10 004 012 007 -0.09 10 -0.80 181 262 -058

11  -040 107 147 -055 11 -508 766 1274 -523

12 022 128 106 009 12 044 068 024 069

13 010 071 061 -0.03 13 -010 066 076 015

14 011 040 029 -002 14 043 060 017 068

15 157 432 275 1959 15 048 152 104 074

16 068 23 168 058 16 602 82 223 75
17 029 105 076 0.16 17 -042 219 261 -0.17

18 078 312 234 071 18 -098 1.8 280 -0.77

19 020 042 021 007 19 -230 415 645 -2.15

20 18 653 464 214 20 -305 587 892 -286

21 2791104 1383 -292 21 103 238 156 134

22 022 051 029 0.08 22 038 083 050 063

23 156 524 368 165 23 -028 130 1.78 -0.34

24 068 193 126 057

25 267 601 333 283

26 067 23 168 057

27 136 370 234 134

28 067 141 074 05

29 057 247 190 047

30 024 179 15 012

31 132 311 178 126

32 045 249 204 035

33 007 132 125 -007

34 010 112 102 -003

3H 091 214 124 080

36 078 440 363 077
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