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Asymptotically Efficient L-Estimation for Regression Slope
When Trimming is Given

Sang Moon Han?

Abstract

By applying slope estimator under the arbitrary error distributions proposed by
Han(1993), if we define regression quantiles to give upper and lower trimming
part and blocks of data, we show the proposed slope estimator has asymptotically
efficient slope estimator when the number of regression quantiles to from blocks
of data goes to sufficiently large.

1. Introduction

We are concerned with estimating asymptotically efficient regression slope estimator
when trimming is given under the regression model

y=XB+_z (1.1)

where y=(y1,--,¥n) ,X is n times p matrix of known constants whose i~th row is Xi,

ﬁ=(30,[51,---,l3p-1)' is a vector of unknown parameters, and z=(21,.,2n) is a vector
of independent, identically distributed random variables with unknown distribution function
F.

The traditional way of estimating regression slope is the method of least squares. Despite
the obvious advantage of least squares(L.S) estimator of regression slope this estimator
performs poorly when underlying error distribution F has tails heavier than those of

normal or asymmetric error distributions. Many authors like Johns(1974) and Sacks(1975)
considered asymptotically efficient L-estimate in the location model. In this paper, we
extend the result of Ruppert and Carroll(1980) for estimating regression slope to
asymptotically efficient slope estimator using regression quantile when trimming is given.

2. The proposed estimators and large sample properties

Before starting this section, we introduce some notation and assumption which are

imposed for all theorems in this section. Although y, X, and z in (1.1) depends on n,

1) Department of Computer Science and Statistics, Seoul City University, 90 Jeonnong Dong,
Dongdaemoon Ku, Secul, KOREA.

-173-



174 Sang Moon Han

this is not made explicit in the notation. Let e=(1,0,...,0)" be (px1), and let Ip be
the (pXp) identity matrix. Whenever r is scalar, r=re. For 0<pi<1, define
Ei=F Ypi). Let N »( 1, 22) denote the p-variate normal distribution with mean vector
U and variance-covariance matrix 2. We also make the following assumptions about the
family A of distributions in what follows.

Al. F has a continuous density f and f(x)>0 for all FE A.

A2 Let xi'=(xa,Xw2, ---,Xip) be the i-th row of X and xa=1, {=1,2,....n and

4]
gx,;,- =0, j=2,3,.p.
£

1
. max "2 _
A3. ’1'_1{2 j<pign T I x5 )=0.

Ad4. There exists a positive definite matrix @ such that lim n N X'X)= Q.
n—o@

A5, Assuming B be preliminary fit, then ﬁ(ﬁ—ﬁ—ﬁgﬁ%(l) for some constant
8.

A6. The density f and its first three derivatives exist and continuous; moreover they are
uniformly bounded and bounded away from zero for all F'€ A,

A7. The Fisher information I(F,0,0) is positive and finite; that is,
0< [ oM F o< .

Motivation of our estimator is as follows; Assume O0<po<p1<..<prx=goe<l.
Moreover, Let K(p;) be the corresponding pi-th regression quantiles. Then for
i=1,2,...,n, define

al:{l if xiK(po )<yi<xiK(p1)

0 if otherwise '

az={1 if xiK(p1 )<yi<xiK(p2)
0 if otherwise

(2.1)

a ={1 if xiK(pi-1)<yi< xiK(px)
10 if otherwise
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Let L(p1),L(p3),...,L(px) be the least squares estimators based on those observations
with @1=1a2=1,...,axr=1 respectively. That is,

Lipn=(X'A1X)"'X' A1y ,
Lipn=(X'A:X)"'X" Azy ,

(2.2

L(pn=(X'AxX)"'X Ay ,

where A;= diag(a; ai --- ai) for i=1,2,....k and X design matrix with rows _)g_,_ for

1=1,2,...,n.

Then our estimator has the following form:
K
Bir=w1L(p1) +w2L(pg)+ ... +wiL( pk), with Z;w,: 1.
=

Therefore, our slope estimator can be obtained by just deleting the intercept part from
L(p1),--,L(pk). Let us denote these (p~1) dimension estimators as

Lo(p1),---,Lo(pk). Then our slope estimator has the following form:

k
Ci=wiLlo(p1) +waLlo( p2)+... +wilo( px), with Ew;: 1. (2.3)

However, we state necessary theorem to prove asymptotic property of our estimator.

Theorem 2.1 Fix k and po,p1,---,pk such that p1—po=p2-pi1= ... =pk—Pk-1= Q&
then

VAl Bi-§- Twid(p) B Np(0( ' Tw)@™)

where w=(w1,wz,-~-,wk)' ,and for i=1,2,...k and i<j<k

S(pi)= ( ak’ f:_:xdF(x),O,.--,O),

2=(04) kxk ,
with
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0= QEZ{ -2 f:le(x)dx+2Ci f:]F(x)dx- [ LT_EXF(x)dx]Z},

ou=on=ai2(% f: FOode-2% . Foods- | iF(x)dx f:lF(x)dx}},

Proof See proof of theorem 2.1 of Han(1993).

From theorem 2.1 we deduce the fact that ¥n( Cx-Bo) BNp-l(o,(_l‘_U_VZM)Q(_)l) ,

where Bo is obtained from B by deleting first component and Q5! is obtained from @~

by deleting first row and column. Next we want to find minimizing weight w of the

asymptotic variance of Ck. But usually it is very difficult to estimate the asymptotic
varance of Ck. So we adopt the similar idea of Johns(1974) to approximate
variance-covariance structure 2. and then find minimizing weight w. We approximate. for
i=1,2,....k, as follows;
oj~qkbi(1-bid @7
05~qk’bi(1-bi)did; 28)
where di=&i-&i-1, bi=pi1+ _%'Qk. Then the approximated variance-covariance

structure of 2 is given as follows;

b1(1-b1) b1(1-b2) ... b1(1-by)
B=qi’D bz(l-—bz) bz(l.—bz) o b2(1-bi) D,

br(1-bx) ba(1-bx) - bi(1-bi)

where D = diag( di1dz, --- ,dx).

Next we want to minimize the following quantity:

min ((w Bw)@s)

where l=(1,1,---,1)' . Because Qo' is fixed, we want to minimize w'Bw under the
constraint w’'l=1 . By a straightforward Lagrange Multiplier argument, we establish
that minimizing weight is

w=(1'B'1)7'B 29)

and
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oy {w'Bw)=(1'B')™ (2.10)

With the minimizing weight given above, we define our slope estimator as given by
(2.3). If we define

e1=1/d1(bo/bid1-1/d2)qx,
ei=1/di(2/b;i-1/di-1-1/di+1)qxi=2,3, .-,k -1,
ex=1/dx(-1/di-(1-bk-1)/(1-bi)dk)gx,

then by straightforward calculation, we have the minimizing weight as

LUizei/{ gei}, =12, ... k.

Let e; be a consistent estimator of e; by simply substituting d; for corresponding
consistent estimate d;. Then if we define w;=e;/{i=zk;e?}, (i=1,2,...,k), then our
estimator is of the form

Ce=wiLo( p1) +wiLo( p2)+..- +wiLo( pi). (211

Han(1993) shows that for all k, Vn(Cx-Bo) and Vn( Ck-Bo) have same limiting

distribution by using residuals after fitting preliminary fit E which satisfies A5. Next

theorem gives proof of asymptotic efficiency of our slope estimator Ck hence of a
when trimming is given.

Before starting the theorem, we briefly mention Rao-Cramer Lower bound I(F,po,px)
when [(n+1)po] and [{(n+1)(1-pk)] observations has been trimmed from left and
right respectively. This lower bound is proposed by Placket(1958) and defined by

o) |, _fw
Do (1-px)

$e 2
I(F,popi)= [, (F/0 v+

Theorem 2.2 Let p1-po=p2-p1=-.-=pix—Pk-1=qgr Then, for given &>0, there exists
N such that for all k2N and F€E A,

n"?(Ci-B0) & N(00%(F) QaH,
where 02(F) <[I(F,po,px)] '+¢,

Proof let's write w’'2w=w'Bw+w'Rw . We first show that with this

minimizing weight W given in (29) , _LQ_'B_UJ—D[[(F,po,pk)]-I for k sufficiently large
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and then we show that & Rw—0 for sufficiently large k. By straightforward calculation,
Blis
B'=qiD7'GD™

where G=(gy) kxk and

Ziit1=Ziv1,i = T:ll_—bi-)—,iz 1,2,...k-1,
bz
o -, (212)
— (bi+1_bi-1) .
&4 T (Bi-bi-1)(bi1-b1) ,i=2,3,...,k-1,
1-by-1

1= (1 -bi) (br-br1) °

and all other g£ij=0. Also by strightforward calculation, the minimum of w’'Bw  given

in (2.10) is
i (1 b2 1. 1 2 1 1
WB D =a g (P (- ok (213)
1 [- 1 _(d-bxy) ]
dk dk (1-bi)dx }

ot

Let F Y (u)=G(u) and ri=po+(i-1)gk, i=1,2,...k. Then we have
di=G(ritqe)-G(r,i=1,2, ...k,

dis1=G(ri+2qi) - G(ri+qu),i=1,2,... k-1

di-1=G(ri)-G(ri-qx),i=2,3, ..., k.

Now let G,",G;", and Gi represent the first three derivatives of G evaluated at r; .

Then, by a straight forward Taylor’s series expansion in terms of qx, we obtain
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di'=gi (G- H (6D 6 +ad (GG
-+ GIGH I+ Edh
di= g (G- (GG +al (GHH G

Gl Gh ek,

(214

dih= gt (G '+ (GG vau L (6% G
LGiGh et
where § is a generic uniformly bounded function of i, k and F€ A. Hence for
1=2,3,... k-1,

=i 2 __1 1,
€= 7q; di ~di din (2.15)
=[2(GHU G- Gi (Gi)31+Equ

Therefore, if fi, fi and fi are f; and its first two derivatives evaluated at G(ry),
from (2.15), we have
ei==[fi (7 =) P+lqe,  i=23,...k-1 (2.16)
Note also that dik=G(pk)-G(pxk—qx) and di-1=G(pe—aqx) - G(px-2qx).

Therefore, from (2.14), we have
2

ex=qk' (fi+ —(lprk—)—ﬁL Eqx) . (217
Similarly , from (2.14), we have
2
e1=qx' (fo+ 200 +&qu) . (2.18)

Therefore, combining (2.16),(2.17) and (2.18) and using the definition of the Riemann
integral, we have

k £ _f(GW) . f(GW) 2
q’mzle“'fm{ AGw) L RGw) ]}d”+
f12+ sz +'—f'
Do (1-pe) Te=h (2.19)
& o 2 2
B __L 2 N fx
X 7 =t og

=I(F,po,pk)
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for sufficiently large k. Hence, we have w'Bw—{I(F,po,px)]™' for sufficiently large k.

Next, we want to show that w’'Rw—0 for sufficiently large k.

Let R=(rj) xxk . Then we can write

-2 G(ri+vqu) Glri+gu
ry=qk {ZG(ri+Qk) fam F(x)dx—2fG(r) xF(x)dx-
Glri+qo

2 (Vb2
[),,, Fod-bi1 b,)d,}

Glri+qw G(ri+qu
o F(x)dx+G(rj+qk)fG(n) F(x)dx-

f Glri+qe) G(rj*th)

F(x)dx F(x)dx-bi(1 —bj)didj}.
G(ry) G(r;)

rij= rﬁzq;z{—G(rj) (220)

Expanding Taylor series of the above ri and ry with respect to gx and noting that
bi=ri+5qx, we get
ri= qi%(l (2G'i+2Gz"Qk+cQ£)( riGiqi+
LLGG 2 ad)-2riGiGign-
[ri(G))*+GiGi+rGiGi lak+ri(gi) k-
ri(1-r)(Gi) ak+Eqi)
where € is a generic uniformly bounded functions for ali i, k and FE A |
Therefore by simplifying ri we get ri=0(qx) uniformly for all i, k and F€E A,

(2.21)

Similary , we have
ri=aqi{ riGiGiqk- ririGiGigh-ri(1- r))GiG;qhi+ Eqi}. 2.22)
Therfore by simplifying ry we get ri=0(gx) uniformly for all i, j , k and FE€ A,
Note that 1’B 1—-I(Fpopx) for sufficiently large k. Also by straightforward
calculation, we have B -1_1_=ng and we deduce that with the minimizing weight given in

29), wi=wrk=0(1)w2=w3=...=wk-1=0(gx). Therefore w'Rw—0 for sufficiently

large k. This completes the proof of theorem 2.2.
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