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An Adaptive Bandwidth Selection Algorithm
in Nonparametric Regression

Kyung-Joon Chal), Seung-Woo Lee?

Abstract

Nonparametric regression technique using kemnel estimator is an attractive
alternative that has received some attention, recently. The kernel estimate depends
on two quantities which have to be provided by the user: the kernel function and
the bandwidth. However, the more difficult problem is how to find an appropriate
bandwidth which controls the amount of smoothing (see Silverman, 1986). Thus, in
practical situation, it is certainly desirable to determine an appropriate bandwidth
in some automatic fashion. Thus, the problem is to find a data~driven or adaptive
(ie., depending only on the data and then directly computable in practice)
bandwidth that performs reasonably well relative to the best theoretical
bandwidth. In this paper, we introduce a relation between bias and variance of
mean square error. Thus, we present a simple and effective algorithm for selecting
local bandwidths in kernel regression.

l.Introduction

Bandwidth selection occupies an important role in the literature of nonparametric
regression {(cf. Marron, 1989 or Eubank, 1988). With few exceptions, the primary emphasis
of this work has been on the selection of globally optimal bandwidth. However, Miiller
(1988) and Staniswalis (1989) showed that gains in estimator performance could be realized
by optimizing the bandwidth locally rather than on global basis. Thus, in this paper, we
present a simple and effective method for selecting local bandwidths in kernel regression.

Consider nonparametric regression to model the independent variable, yi, by
yi = m(t)+g;, i =12 -n
Here, the £; are independent, identically distrbuted random variables with zero mean and
common variance 02, the t; are the non-stochastic design points satisfying 0<¢1<tz2< -
<tpr<1 and m is an unknown function. Without having to assume more about m than it

satisfles such smoothness conditions, we may want to estimate m(f) at some fixed
argument {.
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There are many interesting nonparametric estimators for m(t). Examples of these can
be found in Eubank (1988) and Gasser and Miiller (1979). In particular, the class of
kernel estimators of m(t) proposed by Priestly and Chao (1972) is defined by

AN = - 2 K=y,
nfh h b
where ¢; are equally spaced and A>0 is the bandwidth or window width. The function

K is called a kernel function. It is assumed to be continuously differentiable,
symmetric with support on [-1,1]. When it satisfies

+1 . 1» j = O
f_l z'K(z)dz = {O, j=12--p-1 Q)
kp. j = pr

it is called a kernel of order p.
To use n/‘l\h(t) in practice, one requires to choose both A and K. Discussion of

methods for selecting K can be found in Miiller (1988). We will concentrate here on the
problem of selecting h. The value used for h will be allowed to depend on the point of
estimation ¢t. The goal is to find a good choice of A for each value of ¢ in the sense of
making the mean squre error(mse) of estimation as small as possible.

There are several data adaptive local bandwidth selection techniques that have been
proposed in the literature. Modifications of squared-error cross validation for consistent
estimation of optimal local smoothing have been introduced by Hall and Schucany (1989).
An alternative resampling approach that uses the bootstrap to estimate mse[ n/’l;( t)] is
described by Hiérdle and Bowman (1988). Two other approaches to estimate the mse that
use pilot estimates of m(t) have been studied by Miiller (1985) and Staniswalis (1989). All

of these algorithms involve a search for a local minimum of an estimated mse and require
the specification of some other tuning parameter such as a global bandwidth for a pilot

estimate of m. In contrast, the technique that is proposed in this paper does not require

such initial value and there is no search required for minima of a cross-validation or
estimated mse function.

2. Adaptive Bandwidths

The approach that will be proposed stems from simple asymptotic analysis. Now, by the
Taylor expansion about ¢, it can be shown that if m€ CF[0,1], the expected value of

771 at a fixed ¢ is

- /h
Blmol = [
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where mY(¢t) is the j ™ derivative of m(t) and z=(t-s)/h .

For h sufficiently small, so that [-1,1] € [—t;{l—, %], the above expansion can be
reduecd to

- +1 2
ELano] = [ K@) m(n-zhm P (0)+ 20— m @)+ -

2!
- p
+"£T}!')—"( zh)pm(‘")(t)}dz+o(h”)+ O( %).

Hence, as results of (1), the asymptotic bias of n/‘l;( t) is

(-D*
p|

Elma(t)]-m(t) = P m® (O kp+o(hP). @)

Also, by similar methods used in (2), the asymptotic variance of n/‘l;(t) is

— L t-t;
varl m(8)] n}hz S K~ yvar(y)

2

g 2 1
nh (t-l)/hK (z)dz+ O n’h?

),
where z= (t-s)/h. For sufficiently small A, this expression also reduces to
2 +1
o I 2 1
varf ma(t)] = h J:l K°(z)dz+o( oh ).

Therefore, the mean square error can be expressed as

— 2 P
msel A(D]= 1 Q-+ L m P (0,1 o —;

=) +0(h®), 3

1
where Q= f_l K z)dz. Hence, minimization of (3) with respect to h yields

2 1/(2p+1)
h:={ ; . } @
2pn(k,m @ (£)/p!)
if we ignore higher order terms. Therefore, by plugging (4) into (3), it can be easily shown
that
var( h})=2pbias®( hr), (5)

again neglecting higher order terms.
The basic proposal here is to capatalize on the balance between variance and bias present
ed in (5). Thus, for large n, we should have for any fixed h that

-~ A
var[ ma(t)] h (6)

bias?[ mx(¢t)] ~Bh? )
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for constants A and B. Thus, given several estimated values of the variance and bias,
one

can estimate A and B for A and B such as by least squares method and then solve

(5) to find the adaptive bandwidth choice as
-~ /(2p+1)

(A=) ;
¢ 9pnB €))

In other words, with a grid of h values without considering a boundary problem, both
variance and bias® can be estimated. Then, given several estimated values of the variance

and bias? fitting the relations (6) and (7), estimates A and B can be obtained.

3. Variance and Bias Estimators
3.1 Variance Estimator

In this section, we give a detailed description of our method for local bandwidths
selection. It should be emphasized, however, that this is merely for simplicity and the
approach extends directly to more general designs.

In order to implement the algorithm described in section 2, two important components

should be considered, ie., estimators of var[ ma(t)] and bias[ ma(£)]. Let us first

consider the estimator of variance. From section 2, the exact variance of n/‘l\h(t) is
t- t.

var( a(t)] = 2 ZKZ

Therefore, once a kernel K and a bandwidth h are selected, o? is the only unknown

quantity that needs to be estimated. Gasser, Sroka and Jennen-Steinmetz (1986) propose
and Staniswalis (19893) uses, for an equispaced design,

n-2
0’ —6—(-an2_)— 'Z;[yi+z-2yi+1+yi]2
n-1
m' E[yi-x—Zy#ym]z. 9)

T/l;erefore, var[ ma(£)] can be easily estimated for given value of A by replacing © 2 by
0° , namely

var( h) = . ZKZ £ t'

3.2 Bias Estimator

In order to estimate bias[ ma(t)] directly from (2), one needs to estimate the p™
derivative of m{t). Moreover, one wants to estimate

(-1)%

o h’m P () kp,
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where kp is defined in (1).

Suppose that Kp( z) is a kernel of order p. Hence as we have seen in section 2, by

applying the standard Taylor's expansion and taking a few of leading terms, it can be
shown that for a fixed h and ¢

o~ (p)
Elmy(0)]=m(t) +(-1)? Lm2(8) ;o

p! F
p+2 (p+2)
e(-prr el ro(r ), a0

where now we denote the corresponding kernel estimator by

() = %2[ Ky

Let Kp«2(z) be a kernel of order p+2. Then, it follows that

~ p2 (p+2)
El mpe2()l=m(¢e) +(-1)"*? b (p+2)' @ kp-2+o(hP"?), an
1 &1 g
where Mp.a(t)= n & h - Kpiol —— )y.' and Kp.2= J:lz Kp.2( z)dz#=0.

Now, let Ks(z) be a new kemel such that Ks(z)=Kp(z)-Kpe2(z) and
bBiasa( A) a kernel estimator on this difference defined by

tt,

biasg( h) = n lZi h Ky (——)y..

Then, E[ biasa( A)] is obtained by taking the difference of two asymptotic expressions (10)
and (11) and this difference gives
(-1)” ”*m P (t) overplk,+o(h?)

by ignoring higher order terms. Hence, the leading term is the guantity which needs to be
estimated.

4. Estimation of A and B

Up to this point, estimates of variance and bias have been developed. The next step is to
estimate A and B from the expressions of (6) and (7).

Consider an estimator of m(¢t). Then, for given h, the estimate of the exact variance is

Gr(h =~y g Lot
var = W; 7 , 12)

where 6‘2 is defined by (9) and the estimate of bias is given by
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—— 11 -ty
biasa( /) = — lZi T Ko=)y (13)

In order to obtain estimators A and E, one needs to evaluate (12) and (13) over a grid
of predetermined fixed bandwidths, A1,h2, -, hx. Without taking into account any boundary
problem at a fixed ¢, k variance estimates can be obtained from (12) and denoted by

(v1,v2, &) = (var( hy), var( he),, var( hx)),
. 2( t tn
that is, v; = ZK ——). Also, by squaring the values of (13), we denote

these k bias® estimates as
(b2, b3, b3 =( bias2( hy), biasi( hz), -, biasa( hx)),
that is,

2
b? = > K (— y,-}, =12 - k.

{ 1
nhj £
Now, to derive the least squares estimates, let us consider (6) and (7). Thus, let v; be

modeled by

vj= '—;3;;'+Cj, Jj=12,k,

where {; is independent and identically distributed normal random variable with mean 0

. 2 . . . .
and variance 0°, that is, an usual regression model. Hence, from the above equation, the

least squares estimator of A can be found as

K
n2(vi/ hj)
3

4 2
(};l/hj)

A=

In a similar manner, let b,z be fit to
= BhjP+¢), j=12,-k,
where &; is independent and identically distributd normal random variable with mean 0 and

variance 02. Then, the least squares estimator of B is
2”1
P

Hence, equation (8) for adaptive bandwidth becomes
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~ 1/(2p+1)
A P

£ { 2pn§}
k k. 40
J;ivj/hj)(%;hj )
2p(}§1/h,z)()§b,zh,2")

It is clear that A balances bias’ and var of mse and satisfies (5). Also, it is a
completely data-driven bandwidth.

V(2p+1)

(14)

5. Numerical comparison between A: and A:

In this section, some simulation studies are performed. We try to show how local
bandwidth that is defined by equation (14) is performed compared with the true optimal
bandwidth. In order to show a few different cases, random samples of size n=100, 200, 400
with 0=0.05, 0.1, 0.3 are used for simulations. The true function used is m(¢)=sin(4¢-1.3)
and the true optimal bandwidths from (4) are calculated.

To simplify the simulation, p=2 case is considered. The Epanechnikov kernel

K(Z)="§—(1-ZZ), IZI<1 , is used as a second order kernel, also the kernel

K(Z)= %(724—1022'*3). |ZIL1, which is found by Gasser and Miiller (1979) and

Gasser, Miiller and Mammitzsch(1985) is used as the 4th order kernel. Table 1 through
Table 4 show the asymptotically true optimal bandwidths from equation (4) and the
estimated bandwidths from equation (14). These are obtained from m(¢)=sin(4¢t-1.3) at ¢
=0.489. Since the grid of bandwidths is one of critical tools for this method, several
different grids of bandwidths are used to estimate the bandwidths. The maximum
bandwidths are chosen arbitrarily but small enough to avoid a boundary problem. Also, the
minimum bandwidth used is 0.06 that is large enough for a sufficient number of
observations to be in the window. Then, seven equally divided bandwidths are used to get
the estimated bandwidths.

As we can see from Table 1 through Table 4, this algorithm is stable even if ©
increases up to 0.3. Also, it can be seen that the algorithm is more stable when the sample
size increases. Another advantage of this algorithm is that it is not so sensative of the

maximum bandwidth. Moreover, the estimation is not sensative of the maximum bandwidth
when the sample size is small.
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Table 1 Table 2
Comparison of Local Optimal Bandwidths Comparison of Local Optimal Bandwidths
With True Optimal Bandwidth With True Optimal Bandwidth
(Maximum bandwidth used is 0.32812) (Maximum bandwidth used is 0.30)
o n h: ks o n h: fr
100 0.082993 0.089043 100 0.082993 0.087996
0.05 200 0.072249 0.077595 0.05 200 0.072249 0.076676
400 0.062897 0,067592 400 0.062897 0.066773
100 0.109509 0.117506 : 100 0.109509 0.116147
0.1 200 0.095334 0.102398 0.1 200 0.095334 0.101193
400 0.082993 0.089195 400 0.082993 0.088118
100 0.144499 0.155245 100 0.144499 0.153583
0.2 200 0.125793 0.135206 0.2 200 0.125793 0.133671
400 0.109509 0.117741 400 0.109509 0.116344
100 0.169942 0.183069 100 0.169942 0.181380
0.3 200 0.147943 0.159229 0.3 200 0.147943 0.157539
400 0.128792 0.138576 400 0.128792 0.136981
Table 3 Table 4
Comparison of Local Optimal Bandwidths Comparison of Local Optimal Bandwidths
With True Optimal Bandwidth With True Optimal Bandwidth
(Maximum bandwidth used is 0.26) (Maximum bandwidth used is 0.2179)
o n h: h: o n hi he
100 0.082993 0.086672 100 0.082993 0.085626
0.05 200 0,072249 0.075514 0.05 200 0.072249 0.074481
400 0,062897 0,065753 400 0.062897 0.064867
100 0.109509 0.114477 100 0.109509 0.113335
0.1 200 0.095334 0.099696 0.1 200 0.095334 0.098440
400 0,082993 0.086784 400 0.082993 0.085649
100 0.144499 0.151805 100 0.144499 0.151544
0.2 200 0.125793 0.131878 0.2 200 0.125793 0.130779
400 0.109509 0.114651 400 0.109509 0.113348
100 0.169942 0.180130 100 0.169942 0.181562
0.3 200 0.147943 0.155792 0.3 200 0.147943 0.155634

400 0.128792 0.135131 400 0.128792 0.133998
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6. Conclusions

The proposed algorithm for selecting local bandwidths is practical and simple because it
does not require an initial value. Alsc, similar adaptive approach may be developed for
probability density estimation. We expect that the concern about boundary bias would not
be so great in this setting even if the boundary problem still need to be considered.

However, the problem is the choice of a grid of bandwidths that are used to find
variance and bias estimates. It would be further studied what grid of bandwidths should be
used to estimate variance and bias by simulation study.

The main idea behind the proposed algorithm is to have some smoothing parameter prior
to attempting to find a bandwidth that minimizes the mean squre error. Thus, the
desirability should be obvious for an estimator that does not require a search for the
minimum of a noisy curve such as typically encountered in cross validation or other
resampling methods.
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