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INFLUENCE FUNCTIONS IN MULTIPLE
CORRESPONDENCE ANALYSISD

Honggie Kim?2
Abstract

Kim (1992) derived influence functions of rows and columns on the eigenvalues
obtained in correspondence analysis (CA) of two-way contingency tables. As in
principal component analysis, the eigenvalues are of great importance in CA. The
goodness of a two dimensional correspondence plot is determined by the ratio of
the sum of the two largest eigenvalues to the sum of all the eigenvalues. By
investigating those rows and columns with high influence, a correspondence
plot may be improved. In this paper, we extend the influence functions of
CA to multiple correspondence analysis (MCA), which is a CA of multi-way
contingency tables. An explicit formula of the influence function is given.

1. Introduction

Compared to multiple correspondence analysis, simple correspondence analysis primarily
consists of techniques for displaying the rows and columns of a two-way contingency
table. On the contrary, multiple correspondence analysis is used to investigate the categories
of the multi-way contingency tables. These techniques provide flexible and powerful tools
for statistical analysis. In many problems two- or three-dimensional displays of the table
are highly informative. These graphical displays play an important role in providing insight
and understanding of the data. The mathematical origins of correspondence analysis date
back to the early 1940’s, but it was developed and applied to a great variety of problems
by Benzecri and other French statisticians who emphasize its geometric approach (Lebart et
al., 1984). Interest in the method has been rekindled among English speaking statisticians
by, for instance, Hill (1974), and Greenacre (1981).

Many of the computational techniques and mathematical structures of correspondence
analysis are similar to those of principal component analysis. Jolliffe (1986) describes
correspondence analysis as weighted principal component analysis. The techniques are
briefly outlined in Kim (1992), and more details can be found in Greenacre (1984), and
Lebart et al. (1984),

Critchley (1985) studied influence in principal component analysis, and Campbell (1978)
obtained some interesting results on influence in discriminant analysis. Kim (1992) derived
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influence functions of rows in simple correspondence analysis of two-way contingency
tables. As in principal component analysis, the eigenvalues are of great importance in
correspondence analysis. By using similar techniques, influence in multiple
correspondence analysis can be investigated. In this paper, the influence function (IF) of
categories on the eigenvalues is obtained along with its sample version, the empirical
influence function (EIF).

2. Correspondence Analysis

To briefly outline the theory of correspondence analysis of two-way contingency tables,
consider a population consisting of subjects each of which can be classified according to

two characteristics: A, with possible outcomes A 1,..., A1, and B, with possible outcomes
Bi,.., Bj. Let pji be the proportion of subjects in the population with properties
( Ai, Bj). Then the population can be characterized by the probability matrix

I
P=(py i=1,.,1 j=1,...J), where pi=1, and pii20 Vi,j.
&R

To briefly illustrate correspondence analysis, let
r= Pl gxn=(ry.,r0)', c¢= Pl uxp=(cy,...cp)’,
where ri= ?;p i and cj= 'Z:ip i are the marginal probabilities for the i th row and the
J th column, respectively. And let

D =diag(r), D .=diag(c).

The purpose of a correspondence analysis is to find a K(usually 2) dimensional

subspace which best fits the row profile points in the row space, and to find a K
dimensional subspace which best fits the column profile points in the column space. The
‘best’ fitting subspace of the row profile points is defined to be that for which the total
squared distance of the row profile points to the fitted subspace is minimized, with the

ith row profile point having a weight ri, the i'h row marginal probability. In the column
space, the J th column profile point has a weight ¢j, the Jj th column marginal probability.

The best fitting K dimensional subspace for rows can be obtained by an eigenanalysis
of the matrix

Q=(P-r N'DMP-r DL

A correspondence analysis with K=2 is of special interest, since the result can be
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plotted. The row and column profile points can be projected onto two separate planes, ie.
two separate plots. By overlaying one onto the other, a plot containing both row and
column profiles can be constructed. This combined plot is called a correspondence plot, and
constructing a correspondence plot is the final goal of a correspondence analysis.

A multi-way contingency table can be obtained from a survey consisting of more than

two questions. Let & denote the number of questions. A single question g consists of Pgq

of response categories. The total number of response categories, p, contained in the

questionaire is
p= f: Pa
g=1

Let n denote the number of individuals in the survey.

We denote by Z the matrix with n rows and p columns describing the response of
the n individuals with binary coding. Regarding this binary matrix Z as a two-way
contingency table, simple correspondence analysis can be performed. This procedure is
called multiple correspondence analysis. Since n is usually large, the size of Z is large.
Hence, we use the p by p square matrix

B=2'Z
called Burt's contingency table associated with Z. It can be shown that the
correspondence analyses of Z and B are equivalent (Lebart et al (1984)).

3. Influence Functions

As in principal component analysis, the goodness-of-fit of a correspondence plot is
measured by the ratio of the sum of the two largest eigenvalues to the sum of all the
eigenvalues. That is,

Ai+Ao
K
B
=1
where K is the rank of @i. Hence, any row or column which has a high influence on

the MA’s will also have a high influence on the correspondence plot.

Critchley (1985) studied influence of an observaion vector on the eigenvalues
in principal component analysis, and Campbell (1978) obtained some interesting results on
influence in discriminant analysis. Kim (1992) derived influence functions of row on the
eigenvalues in simple correspondence analysis. The reason why we are more interested in
the influence of rows rather than cells is as follows. To improve a correspondence plot, we
are more concentrating on deleting influential rows. Deleting a cell (making a cell empty in
the contingency table) will keep the row (with empty cell) in the correspondence plot,
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which misrepresents the original frequencies of the row. When we delete a TOW, we can
regard it as not being in the original caregory set, leaving other rows to represent their
original frequencies. By extending these results, influence in multiple correspondence
analysis can be investigated.

As mentioned in section 2, multiple correspondence analysis is an ordinary

correspondence analysis of the n by p binary matrix Z. Hence, we start with the
estimated probability matrix

Z
nQ

instead of the probability matrix P in correspondence analysis in section 2. Note that n@®

is the total of the entries in Z since there are 7 rows in Z and each row of Z
contains exactly & many 1's.
Now correspondence analysis of Z is performed through an eigen-analysis of

Q2= A'( -—é‘) 14 [(diag(c1,....cp)]

where
Z 1
A= o 1(c1,..,cp)
and

1 = n dimensioal vector of 1’ s.
Note that ¢ is the j™ column sum of Z divided by n@Q. Q2 can be simplified as

1

£2= nQ*

(Z-Q1(c1,..cp))( Z-Q1 (c1,....cpo))diag(c,....cp)] .

If we write
Q2= R [diag(c1,...,cp)] 7,
then it can be shown that

Q3-(diag(1/¥ c1,...1/¥ c,)) R (diag(1/¥ c3,..,. 1/V )
is a symmetric matrix having exactly the same set of eigenvalues as 1. By applying the

results of Kim (1992), the empirical influence function of i row of Z on the k™
largest eigenvalue is given by

Yeo( 2T Li _ui
EIF(\ f1) Q(z:ailg e

where 2w is the coordinate of the i th row projected on the k th principal axis,

U;' is the J th component of the eigenvector corresponding to the k largest eigenvalue,
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and f; is the Ij " element of matrix Z.

The empirical influence function given above measures the influence of rows, that
is, individuals, on the eigenvalues. We are more intersted in the influence of the columns,
which represent the response categories. By exchanging the roles of rows and columns of

Z, the empirical influence function of j® column of Z on the k largest eigenvalue is
given by

EIFOv hj)=f;( 2%-n? XZQ—%JL o),

where 5; is the coordinate of the J # column projected on the k® principal axis,
Uwis the 7 component of the eigenvector corresponding to the k* largest eigenvalue,

and f+j is the 7™ column sum of matrix Z.
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