Journal of the Korean Statistical Society Vol. 23, No. 2, 1994

A Note on the Interchangeable Process

DugHun Hong¹

ABSTRACT

Let $\{X_n\}$ be conditionally i.i.d. given $\mathcal{G} \subset \sigma(X_n, n \geq 1)$. We will prove that \mathcal{G} is degenerate if and only if $\{X_n, n \geq 1\}$ are i.i.d. random variables(r.v.s). As a corollary the Hewitt-Savage zero-one law is obtained using the fact that interchangeable process is conditionally i.i.d. given the σ -algebra of permutable events.

KEYWORDS: Interchangeability, Ergodic theorem, Degenerate σ -algebra.

Let $\{X_n, n \geq 1\}$ be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers $i_1, i_2, i_3, \ldots, i_k$, the joint distribution of

$$X_{i1}, X_{i2}, \ldots, X_{ik}$$

depends merely on k and is independent of the integer i_1, i_2, \ldots, i_k . From this definition we can easily check that it is a stationary process (Breiman(1968),p118). Then by the Birkhoff's ergodic theorem $\lim_{n\to\infty} n^{-1} \sum_{i=1}^n I_{[X_i < x]} = P[X_1 < x | \mathcal{I}]$ almost certainly(a.c.), where \mathcal{I} is the σ -algebra of invariant events. If we

¹Department of Statistics, Hyosung Women's University, Kyungbuk, 713-702, Korea.

follow the proof of theorem 7.3.2(Chow and Teicher(1988)) using the above fact and noting that the tail σ -algebra $\mathcal{T} \supset \mathcal{I}$, we have the following result.

Theorem 1. Random variables X_n , n = 1, 2, ..., on (Ω, \mathcal{F}, P) are interchangeable if and only if they are conditionally independent and identically distributed given either the σ -algebra \mathcal{P} of permutable events or the σ -algebra \mathcal{I} of invariant events.

Definition. A σ -algebra \mathcal{G} of events is called degenerate if P(G) = 0 or 1, for all $G \in \mathcal{G}$.

It is noted that the conditional independence of $\{X_n\}$ given \mathcal{G} does not imply that \mathcal{G} is degenerate. A good example for this is sign-invariant random variables (see Berman(1965)). Now we consider the main part of this paper.

Theorem 2. Let $\{X_n, n \geq 1\}$ be conditionally i.i.d. given a σ -algebra $\mathcal{G} \subset \sigma(X_n, n \geq 1)$. Then \mathcal{G} is degenerate if and only if $\{X_n, n \geq 1\}$ are i.i.d. r.v.s.

Proof. Suppose \mathcal{G} is trivial. Then for any event A, a version of $P(A|\mathcal{G})$ is P(A). Thus, any two conditionally independent events given \mathcal{G} are independent. The independence of the sequence $\{X_n\}$ depends only on countably many events, so the sequence is independent if it is conditionally independent given \mathcal{G} . The distribution of the sequence $\{X_n\}$ also is determined by countably many events, so the conditional distribution is the same as the distribution.

For the other half, let \mathcal{G} be a non-trivial sub- σ -algebra of $\sigma(X_1, X_2, \ldots)$ and let X_1, X_2, \ldots be i.i.d. Let A be an event in \mathcal{G} such that $\delta < P(A) < 1 - \delta$, where δ is some positive quantity. It is enough to show that the sequence $\{X_n\}$ is not identically distributed, conditioned on the occurrence of A. Choose an integer N and a Borel set $B \in \mathbb{R}^N$ such that A is closely approximated by the event $C = \{(X_1, \ldots, X_N) \in B\}$. In other words, $P(A \Delta C)$ is small in comparison with δ . Note that C is independent of $C' = \{(X_{N+1}, \ldots, X_{2N}) \in B\}$. Thus, $P(C'|A) \approx P(C'|C) = P(C') = P(C) \approx P(A) < 1 - \delta$. But

- $P(C|A) \approx P(C|C) = 1$. The desired result follows.
- **Remark 1.** The second half of the proof of above theorem can be obtained easily from Theorem 7.3.4(Chow and Teicher(1988)), but we give simple direct proof here.
- Corollary 1. If $\{X_n, n \geq 1\}$ are conditionally i.i.d. given a σ -algebra $\mathcal{G} \subset \sigma(X_n, n \geq 1)$ and is ergodic, then \mathcal{G} is degenerate.
- Corollary 2. If an interchangeable process $\{X_n, n \geq 1\}$ is ergodic, then the σ -algebra of permutable events is degenerate.
- Corollary 3. (Hewitt-Savage Zero-One Law) If $\{X_n, n \geq 1\}$ are i.i.d. r.v.s, then the σ -algebra of permutable events is degenerate.
- Remark 2. In Corollary 7.3.8 (Chow and Teicher(1988)), Theorem 7.3.4 (Chow and Teicher(1988)) and, additionally, Kolmogorov zero-one law are used.

REFERENCES

- (1) Berman, S.M. (1965). Sign-invariant random variables and stochastic process with sign-invariant increments. *Transactions American Mathematical Society*, **119**, **216–243**.
- (2) Breiman, L. (1968). Probability, Addison-Wesley.
- (3) Chow, Y.S. and Teicher, H. (1988). Probability theory: independence, interchangeability, martingale, second edition, Springer-Verlag.