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ABSTRACT

Suppose that a stationary process {X,} has a marginal distribution
whose support consists of sufficiently large integers. We are concerned
with some analogous law of large numbers for such distribution func-
tion F. In particular, we determine a weak law of large numbers for
maximum queueing length in M/M /oo system.

We also present a limiting behavior for the maxima based on AR(1)
process with binomial thinning and poisson marginals(INAR(1)) intro-
duced by E.Mckenzie. It turns out that the result of AR(1) process is
the same as that of M /M /oo queueing process in limit when we observe
the queues at regularly spaced intervals of time.
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1. INTRODUCTION

Suppose Xi, Xs,..., X, be 7.1.d. random variables with distribution func-

tion F. Gnedenko(1943) proved that if for any y > 0,

fim @)

= 1 — Pz +y)
then there exists a sequence of constant a, such that the distribution of M,, =
max{Xi, Xz,..., X, } —a, converges to a distribution degenerate at 0 in which
case M, is said to obey the law of large numbers(LLN). The LLN, however,
can not hold at all for integer valued random variables since %ﬁé—) =1 for
each integer n and any y € (0,1). This problem stimulated Anderson(1970)
to provide an analogus LLN for the case when F' belongs to the class G of
distribution functions whose support consists of all sufficiently large positive
integers. Anderson defined a continuous distribution function F. associated

with each F' € G. Namely, define for any real number z

he(z) = h([e]) + (o — [2]) (h([x +1)) - h([;z:])), (L1)

where [z] is the largest integer not exceeding z and h(n) = —In(1 — F(n)) for
integers n. Then set F.(z) = 1 — exp{—h.(z)}. F. has the properties that
F.(z) = F(z) for integer  and F(z) < F.(z) < F(z + 1). Furthermore, F, is
strictly increasing and for all sufficiently large n there exists an unique 8,(7)

such that for 7 < oo

1— Fc(ﬁn(T)) =n7lr (1.2)

Theorem 1.1. (Anderson). Suppose X, X,, -+, X, are i.7.d random
variables with d.f /' in G. Then

(i) limsup P(‘Mn — 6” S T) S exp(_e—-ao:)

and
hmmfP(]Wn — ﬂn _<_ .L) 2 exp(__e——a(x—l))

n—00
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for some a > 0, for all z if and only if

r 1 — F(n)
oo 1 — Fn+ 1)

Here, 8, = £,(1) in (1.2).

= e®.

(i1) There exists a sequence of integers I,, such that

lim P Mn:InorIn—i—l}:l

if and ony if
im =)
n—co 1 — F(n+ 1)
Anderson applied Theorem1.1,() to obtain bounds on the asymptotic distri-
bution of the maximum queue length in a M/M/1 system with traffic intensity
less than 1 by considering maxima between regeneration points. Similar works
were considered for M/M/s system by Serfozo(1988a and b) and McCormick
and Park(1992a). With basically the same idea,we may apply the result (i)
in Theorem 1.1 to get an analogous LLN on the maximum queue length in

M/M /oo queueing system. This is the first part of this paper.

Mckenzie(1988) introduced a family of models for discrete time processes
with Poisson marginal distributions which are members of discrete self de-
composible class(SDS)(cf.Steutel and Harn(1979)). Let B;,¢ > 1 be an 4.i.d
sequence of Bernoulli random variables with P(B; = 1) = a. The defining

difference equation takes the form
Xn=a*xX,q +W,, (1.3)

where o * X denotes x| B;, and {W,} is a sequence of i.i.d Poisson (ah),
here & = 1 — a. Then the sequence {X,} is stationary and has the same

autocorrelation structures as for the usual linear AR(1) processes. Moreover,
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we easily see by probability generating function(p.g.f) that « * X is Poisson
(af) and the marginal distribution of X, is Poisson (#). In the second part
of this paper we devote to extremes of sequences generated by (1.3). The
approach used to establish an analogous LLN of M, is technically similar to
that of McCormick and Park(1992b) which generalizes Theoreml.1, (i).

2. A LAW OF LARGE NUMBERS FOR MAXIMUM
QUEUEING LENGTH IN M/M/oco SYSTEM

Consider the queueing processes, so called M/M /oo, that may be inter-
preted as the case where a new server is always available for each arriving
customer in a birth and death processes with the birth rate Ay = XA and the
death rate puy = ku where k is the queue size at which births occur or deaths
occur. Let Q(t) be the queue length at time ¢ in a M/M /oo system. It can be
checked by Chung(1967) that

Fn)=P{ max Q@t)<n}=1-(3kp™*)", (2.1)
k=0

Ti<t<Tig1
where 7; is the 7th visit time to state 0 and p = A/u. Thus we have

1~ F(n) . (k=0 k!P—k)—l
T F(nt 1) (Cpm ke h)

We first present some preliminary results which are useful to find an unique

— 00 asn — oo. (2.2)

B.(7) because, in practice, it is often not easy to get the g, in (1.2).

Lemma 2.1. Suppose that %})ﬂ — 1 as n — oo, where F' € G and g 1s

a continuous function. Then we may take 8,(7) such that for some 7 < oo,

n- g(ﬁn(r)) — T

if one of the following conditions is satisfied ;

A:lim_..ool—l%%:e“O<a<ooandfor0§y§1

L(m—)—— — e  uniformly in y as ¢ — oo, (2.3)
g(z +y)
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or B: lim_ 1—};-%% = oo and for some constant § and 0 <y <1

— 1 uniformly in y as ¢ — oo. (2.4)

In 9(z + y)/yln

9(z) z+y

Proof. We have from (1.1) that for large enough z

he(z) = —lng([x]) + (:E - [x]) (— lng([m + 1]) + lng([x])) + o(1).

Assume that (2.3) holds. Then for large enough z

= —Ing(x —HM T~ |T n———~g([$]) o
he(z) = —Ing(e) —In T + (== [=])(1 g([m+1}))+ (1)-
= —Ing(z) + o(1). (2.5)

Next,when (2.4) is true,then for sufficiently large =

= —Ing(z —ng—(@ z— [z n—_g([m]) 0
ho(z) = —Ing(z) —1 o) + (=~ [2)(1 g([x+1]))+ (1).

= —Ing(z) + o(1). (2.6)
Choose B,(7) such that n - g(8,(7)) — 7 as n — oo. Let

vn = In{n(1 = F.(8.(7))) } = Inn — he(Ba(7)).
Then by (2.5) or (2.6) we have that
Inn - g(Ba(7)) —Inn + h(Bn(7))
=1ng(Bu(7)) + he(Bn(7)) = 0 as n — oo (2.7)

Furthermore,
Inn-g(B.(r)) = Inr.

Thus by (2.7)
vp=Inn—h(Bn(7)) — InrT.
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Therefore,

n(l - Fp(ﬂn(r))> — T asn — 00.

This completes the proof.

Lemma 2.2. Suppose that Q(t) is the queue length at time ¢ in M/M /oo

queue with 79 = 0. Then there exists a sequence of integers I,, such that

lim P max Q(t) =1, or I, + 1} =1,

n—00 0<t<mn

where

I [1nn— %111277'— %lnlnn + 1]
" Inlnn—1—1Inp 20

Proof.. Let Y, = max;<i<r,, @(t). Then, since 7o = 0, Y/'s are i.i.d
random variables with d.f ' defined in (2.1). Thus we have

max Q(t) = max{Yl, Yo, ..., Yn}.

0<t<Ty
The conclusion follows from (2.2) and Theorem 1.1, (ii) if we show that

_ Inn — %1n27r—— %lnlnn

Bn =

1
Inlnn—1—1Inp + 2’ (2:8)

where 3, = 3,(1) in (1.2).
Now, by Stirling’s formula, for large n

(8] i
L= F(]) = (k™)

k=0

[64] _1

By taking g(z) = {(£)*v2rzp~®}~! in Lemma 2.1, note that for 0 <y <1

z+
lng—(g(w—)y)/{yln

In(1 + %)_I—Fln,/ﬁ; +ylnp—yln(z+y)+y

= — 1

yInp —yln(z +y)
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uniformly in y as £ — oo since (1 4+ y/z)* — e¥ uniformly in y as ¢ — oo.

Hence, by Lemma 2.1 and simply setting

(/3 ) 27 Bnp "

the claim follows.

Note that the result of Lemma 2.2 may be useless in the practical sense
because the time interval itself is a random variable. That is, 7, cannot be
observed in advance. Thus we consider the maximum queue length over a

constant time interval [0, ], i.e, the limiting behavior of M, = maXo<s<t Q($).

Theorem 2.3. Suppose that Q(t) is the same as in Lemma 2.2. Then

there exists a sequence of integers I, such that
lim P{M, = I, or I, + 1} =1,

where

2

I, =
! Inln[m;] —1—1np 2

[ln[mt] — 31027 — Linlnjm,] 4 1}

and

my=1-Xe ?,

Proof. We know from Theorem 2.2 of Hall(1988) that the expected length
of busy cycles in a M/M /oo with arrival and service rate, A and u, respectively,
is A71e?. Let N; be the number of busy cycles up to time ¢. Then it is obvious
by the renewal theory that

N,
~ — 1 in probability as ¢ — oco. (2.9)
Ty

Since

(s = U [{% =5 max 00) < 2 max (o) < 2.}

T3 <t<LT. +1

489
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where z; — oo as t — oo, using the Markovian property, (2.1) and (2.9), one

can show (cf. Berman(1986)) that for any 6 > 0 and for sufficently large ¢,

<
P{lsksrflm%)((w)]y’“ <o} +o(l) (2.10)
< P(M; < z4) P{ max  Y; < xt}, (2.11)

l<k<[m¢ 1-— 5)]

where Y; = max.,_,<i<r, Q(%)-
As shown by Anderson (1970), liml—iﬂﬁl— = oo for F' € (G implies that for

F(n+1)
any € > 0,
Y, P Q) < et 1} =1
and
Jim Py max Q(s) < fn — e} =0,
where 8, is 3,(1) as given in (1.2).
Since,

In[m(1 4 6)] — In27 — LInln[m,(1 + 6)]
Inln[m,(1+6)]—1—1Inp

Bim148)) =

In[rn:(1 + 6)] — Infm.]
Inlnfm;] =1 —1Inp

< Bpng +
for any 0 < ¢ < %, there exists t; such that
Bim.(1+6)] < Bimy + €1 whenever ¢ > 1. (2.12)
Similarly, there exists t; such that for any 0 < €, < %
Bim.(1-6)] = Bimy — €2 Whenever t > ¢,. (2.13)
Let €o = max(ey, €2). Taking Xy = B, 146)) + €+ 1 in (2.10), we have by (2.12)
1 < liminf P{M, < Bim,arey + € + 1} < liminf P{M; < By + €0+ €+ 1}

and thus

lim P{M, < Bim) + €0 +e+1} =1. (2.14)
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Next, letting X = Bpmn,1-5)) — € in (2.11), we have by (2.13)
lim sup P{Mt < Bim,] — €0 — e} < limsup P{Mt < Bime1-6)] — 6} <0

and so
lim P{M; < By — €0 — ¢} = 0. (2.15)
Thus (2.14) and (2.15) yield

1

—2—),<—1~+60+c}:1.

lim P{‘Mt ~ (Bma+3)| < 3

Since M, is an integer valued random variable, the proof follows.

3. A LAW OF LARGE NUMBERS FOR AR(1)
PROCESSES WITH POISSON MARGINALS

Let {X,} be a sequence of stationary processes with the marginal distri-
bution function F' in G. Obviously, some form of dependence restriction is
necessary for a limiting distribution of M, = max(Xi, X5, -- , Xn) as for an
usual stationary sequence. Leadbetter et. al.(1983) introduced distributional

mixing conditions. Let
Fl,2,--~,k(un) = P(Xl S Up, X2 Sty Xy < un),

where u, is a sequence of constants such that u, — co as n — co. Now, define,

so called, mixing conditions as follows :

The condition D(u,) is said to hold if for any integers 1 <4; < - <4, <
J1 <+ <jg <nfor which j; —1, > [, we have

< ay,, (3.1)

Ex:"wip,jl,'“,jq(un) — Fil,...,,-p(un)Fjl,...,jq(un)

where a,,, — 0 as n — oo for some sequence [/, = o(n).
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The condition D'(u,) is said to hold for the stationary sequence {X,} if

(%]
limsuanP(Xl > Uy, X; >u,) =0 as k— oo.
=2

If n{l — F(u,)} — oo, the condition D’'(u,) is not satisfied even for i.i.d se-
quences. However, when we modify the mixing conditions in a natural manner
for such sequences, we have the following result analogous to LLN which may

be regarded as an extention of the result (:z) in Theorem 1.1.

Theorem 3.1. For a stationary sequence {X,} with marginal d.f F' € G
such that |~ Fn)
) — F(n
Lim m = oo (3.2)
if, for arbitrarily large 7(< o0), there exists a sequence v, of constants such
that limn{l — F.(v,)} = 7 and, D(v,) and D'(v,) hold, then there exists a
sequence of b, such that

limP{Mn = [bn T %] or [bn T %] + 1} = 1.

In fact, a possible choice of b, is 5,(1) in (1.2).

Proof. Let n’ = [n/k] for fixed k and each n. Since

!

(M > un} = (X0 > wa},

=1

we have, by stationarity
L—n{l = Flun)} < P{My <un} <1=n'{l = Flu)} + S0, (3.3)

where S, = S,x =1/ Z:iz, P(X1 > up, X; > uy).
Since (3.2) implies that

im L= Fe(®)

—————— =00 for any y > 0,
AT (e ) &
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it follows that
1 - Fc(IBn + 6)
nyl — F.(8, + 0 3.4
and 1 F(8 |
— —€
nyl — F(B, —€); = i , 3.5
{1-F5 -9} = 75, (3.5)
where 8, = 8,(1).
Furthermore, by the property of F.(-), we have
1= Fo(un) <1—=F(up) <1— F.(u, — 1), (3.6)

Thus, if we take u, = 8, + ¢+ 1 in (3.3), it follows immediately by (3.4) and
(3.6) that
P{M, <Putetl)—1 (3.7)

Next, we have by assumptions that for fixed 7
limsup P{M71 < Vn} <e,

where we used (3.3) and (3.6).
Since n - {1 — Fo(B, — €)} — oo, clearly 8, — € < v, for sufficiently large n so
that

lim sup P{Mn < B — e} < limsup P{Mn < I/n} <e T,

Since this holds for arbitrarily large 7, by letting 7 — 0o we have

lim P{M, <, — ¢} =0. (3.8)

n—00

Hence, (3.7) and (3.8) imply the proof.

We now present some preliminary results that will be needed in establishing
our mixing conditions defined earlier. Note throughout this paper we define

a”=1-—ao”.

493
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Lemma 3.2. For the stationary sequence {X,} given in (1.3), we have

for each n,

(Xo, X (XO,ZQ “xWi+a"* Xo) in distribution.  (3.9)

Proof. The equality in (3.9) is easily checked By p.g.f and mathematical

induction.

Lemma 3.3. When X, is according to Poisson distribution with param-
eter 0, 5,(1) in (1.2) is given by

Inn+Z—-0+2n6—1n2r 3
ﬁ — 2 2 2 + —.
" Inlnn —Inlnlnn—-—1—-1né 2
Proof. First, observe that for large n
1—-F(n) oo —Gew/ i %_n—l—?
~ nt2 ’
1-F(n+1) z‘—n+l PR (791+1)! 0

where we used the Stirling's formula. Hence we have the tail probability for

large S,

00 6—901:
SP(A ) = Y
[Bn+1] ’

~ e—ﬁawn+u{([_ﬁ_zeil_1)[ﬁ"“k farlBa+1} " (3.10)

Note that (3.10) is of the same form as for M/M/oco queues in Lemma 2.2.
Thus by Lemma 2.1 and simply setting

{2 i) =

the proof follows.
For the Markov process {X,} given in (1.3), let P, and P be the distributions
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of X, with initial distributions which are degenerate at z and Poisson(8),

respectively.

Lemma 3.4. The stationary sequence {X,} given in (1.3) satisfies con-
dition D(u,) for any sequence {u,}. Moreover, the mixing coefficient in (3.1)
18

ay,, = O(n‘ﬁ) for some 0 < np < 1.

{

Proof. By Lemma 2.5-2.7 in McCormick and Park (1992a), for j — i > {

,some constant ¢,d and 0 < §,¢ <1

IFle---,X;‘,XJ'wan(un) — FX1,---,X4(un)FX],~-~,Xn(un))

(n+2)P(a" * Xo > 1) +2P(X,, > n) + ceV™

IA

< {(n +2)a”™ + Sn}d + ceV™

where we used o * X is Poisson(af). Hence the proof is completed.
Note that since n{l — F.(8.(1)} — 1, we can always find the sequence of v,

by nature of Poisson distribution such that
n{l — Fc(l/n)} — T
Moreover, one can easily see that

ve = O lnn ) (3.11)

Inlnn

Lemma 3.5. For the sequance of {X,} given in (1.3), condition D'(v,)
holds.

Proof. First observe by Lemma 3.2 that

P(Xy > v, X; > vy)
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1 X1
= P(X: > v, 30 x Wit Y Bi(a ™) > w)

1=2 1=1

1 [Vn+1]

~P(Y o Wit 3 B > u)P(Xa=[m+1])  (3.12)

=2 J=1

where we used the tail behavior of Poisson distribution. And, one can see by
the choice of v, in (3.11) that

n-P(X; = [8.+1]) = O(lnn). (3.13)

Since Z'_g o'~ %W, has Poisson distribution with parameter =16 by p.g.f and
is independent of Z[V"H B;(a'71), we have an upper bound by Bernstein’s

inequality such that, for some canstant { and each n

[vn+1]

(ZQ*J*W—FZ a’1>1/n)

< (exp(—ab(l — s,))(a+ as,) s, . (3.14)
Now, taking s, = %,'y > 1, (3.14) becomes O(n").

Thus, (3.12) and (3.13) with the above yield, for some constant ¢~

—
S
—

3
lim n - EP(Xl > Up, Xi > V)
i=2

n—00

< lim ¢*n'™7Ilnn.

n—oo

This completes the proof.

Theorem 3.6. For the sequence of {X,,} defined by (1.3), we have

lim P Mn:[bn+%] or [bn+%]+1}:1,

n—oo

where
Inn + % -0+ %an—— %111271‘

= Inlnn —Inlnlnn —1 —1né

L3
-
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Proof. By Theorem 3.1, Lemma 3.4 and Lemma 3.5, the theorem is

immediate.

Remark. : The norming constant b, in Theorem 3.6 is asymptotically
the same as that in Lemma 2.2. This result confirms comments of Steutel
et.al (1983) and Mckenzie(1988) when we observe M/M /oo queueing system
at regularly spaced intervals of time. Moreover, we can see that the Poisson pa-
rameter § in (1.3) can be interpreted as the traffic intensity p = % in M/M /oo

queues.

Discussion. : The results we have discussed here may be applied to deter-
mine design of systems such as telephone exchanges and super markets. For
example, telephone engineers studying questions of fundamental importance
for designing telephone exchanges may be confronted with the type of stochas-
tic processes discussed in this paper. A typical concern is the queue length
of customers waiting to be served. Large values of the queue may call for in-
stallation of auxillary exchanges , employee overtime, or redesigning telephone
exchanges. A natural question is: What is the probability that the queue will
exceed a specified critical value within a certain interval of time? Or how
does one design telephone exchanges to manage a given percentage of calling
demand for a long future time? These kinds of questions can be answered by

considering the maximum value behaviour of queues generated from M/M /oo

or INAR(1) processes.
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