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An LIL Via Self-Normalization for Sequences
of Sign-Invariant Random Variables
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ABSTRACT

Some extensions of the law of the iterated logarithm via self-normalization
are obtained for sequences of sign-invariant random variables.
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1. INTRODUCTION

Let X;, X, ... be a sequence of random variables and let
S, =X1+--+ X, (n>1),
Vie X244+ X2 (n2>1).

The first result on the law of the iterated logarithm (LIL) via self-normalization
was obtained by Marcinkiewicz(1937) who observed that for any symmetric
distribution

limsup —————— <1 as., (1.1)
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where Lz = max(l,log, z) and Loz = L(Lz). For this result the random
variables need not be identically distributed, just independent and V? 5 oo
with probability 1. Later, results were obtained with a refinement of (1.1)
by Griffin and Kuelbs(1991). They also treated identically distributed case.
The purpose of this paper is to generalize Griffin and Kuelbs’ LIL via self-
normalizations to sequences of “sign-invariant” random variables. We also
consider LIL via self-normalization for a sequence of exchangeable and sign-

invariant random variables.

2. EXTENSTIONS TO SIGN-INVARIANT
SEQUENCES

Let (X,) be a sequence of random variables on a probability space
(Q,F, P) such that every finite dimensional distribution function(d.f.) of
the sequence is invariant under any changes in the sign of (X.). Such ran-
dom variables were called “sign-invariant” (Berman,1962,1965). It is obvious
that a sequence of independent random variables with distribution functions
F.(z) of X, is sign-invariant if and only if F.(z) is symmetric, i.e., every

one-dimensional d.f. is invariant under changes in signs.

Lemma 1. Let Xj,X,,... be sign-invariant random variables on a proba-
bility space (2, F, P). Then there exists a regular conditional distribution, say
Pv for X = (Xy,Xq,...) given o(]X,|,n > 1) such that for each w € § the
coordinate random variables {¢,,n > 1} of probability space (R>,B*, P¥)
are independent and Pv (fn = Xn(w)) = % = pv ({n = —Xn(w)) for all n.

Proof. Let B={& >t,...,6, > ta}, t: > 0,7=1,2,...,n. Note that

PW(B):{%7 if |X,-(w)[>t,~, z':l,...,n ’

0, ifnot
and

P(1X:| > th, .., | Xa| > tn) =2"P(X1 > th,..., X > ta).
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Then
/P‘”({l >ty b > 1 )dP(W)

=27 P(|X0| >ty [ Xal > 1)

=272 P(Xy >y, X > tn)

=P(Xy > t,..., X, > t,).
This proves the Lemma.

The sequences (X,) is “exchangeable” if the joint d.f. of (X, X,,...
X,) say Gp(z1,...,2,), is a symmetric function for each n. According to the
fundamental theorem of de Finetti, there exists a sub-o-field of the o-field F
and a conditional d.f. G“(xz) such that the (X,) are conditionally independent

Y

given G with the common conditional d.f. G*(z). More specifically, one may

write,

Gol1, ... 2n) = /9 G (1) -G () dP(w), (2.1)

where G¥(z) is a d.f. for each w € 2, and an F-measurable function for each

z. In general, for any set H € F,
P(H) = / PY(H)dP(W), (2.2)

where P“(H) is the conditional probability of H computed under the assump-
tion that the X, are mutually independent with the common conditional d.f.
Go(z).

The following lemma, due to Berman(1962), is used.

Lemma 2. If (X,,) are exchangeable and sign-invariant random variables,

then in the representation (2.1), for almost all w
G¥(z) =1-G*(—xz),

for all z, in the continuity set of G¥(z).
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Theorem 1. Let (X,) be exchangeable and sign-invariant with F(X?) <
oo and let A = {w : G (+) is degenerate at 0}. If ¢ is eventually nondecreasing

and positive, then
P(Sn > Vag(n) i0.)=0(=1-P(A))

according as

J(¢) < oo(= oo},
where -
J(¢) = 2_: @6_4@(””2. (2.3)

Proof. According to (2.2),
P(S, > Vid(n) i0.) = (/A +/Q_A)P“’(Sn > Vid(n) i0.)dP(w).

Forw e A, 5, =V, =0 as. for all n, hence P¥(S, > V,¢(n) i.0.) =0; on
the other hand, by Theorem 2(Griffin and Kuelbs, 1991) and Lemma 2, for
almost all w ¢ A,

P*(Sp > Vag(n) io.)=0(=1)
according as
J(¢) < oo(: oo).

Hence the theorem follows.

Theorem 2. Let X;,X,,... be sign-invariant random variables

with V2 — oo w.p. 1. If ¢ is nondecreasing and positive eventually and
n p g p y

J(¢) < oo where J(¢) is as in (2.3), then

P(S, > V,d(V2) io.) =0.

Proof. Weset T, = & + -~ + &, W2 =€+ ... +¢2. By Lemma 1

€1,&2,. .. is independent and symmetric with respect to P“ for all w and by
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the assumption V> — oo w.p.1, P¥ (Wf - oo) =1 w.p. 1. Hence it follows
from Theorem 1(Griffin and Kuelbs, 1991) that

P(P(T, > Wo(W?) io0)=0) =1

Therefore we have
P(S, > Vag(V2) io0.)
- /P(Sn S Vag(V2) o | 1Xal 1 Xal,...)dP
- /P‘*’(Tn > Wa(W2) i0.)dP =0.

This completes proof.

Theorem 3. Let X, X;, X,,... be stationary, ergodic and sign-invariant
with 0 < E(X?) < oo. If ¢ is eventually nondecreasing and positive, then

P(Su > Vad(n) i0) =0(=1) (2.4)
according as
J($) < oo(= oo),
where J(@) is as in (2.3).

To prove this we need the following lemmas.

Lemma 3. Let {X,,n > 1} be a sequence of independent random vari- -
ables with P{X, = 4z,} = 1/2, and let |z,| < n!/? for all large n and

(22 + -+ 22)/n converges to a positive constant. If

> X72z+11(|Xn+l| < C') g(;ln—)('ﬁz(n)ﬂ
n=1

diverges with probabilty 1 for some C' > 0 and ¢(n) T oo, then

P(Sn > (23 4+ + z22)d(n) i.o) = 1.



346 DugHun Hong

Proof. Just follow the step 2 and step 3 in the proof Theorem 2 (Griffin
and Kuelbs, 1991).

Lemma 4. Let ¢ be eventually nondecreasing and positive such that
Lyn < ¢*(n) < 3Lan for large n, and let Lomey f(n) = oo, where f(n) =
ﬂnﬂe“i’z(”)ﬂ. Then if lim, oo ~ S @; = (0 < o < 1) where a; = 0 or 1, we

have
o0

> anf(n) = co.

n=1

Proof. Let {a,,} be the subsequence of {a,} such that a,, =1 for all k,
then lim,_.., ¢ = 1/« and hence for large &, n; < ([i] + 1)k where [z] stands
for the integer part of z. Let g(n) = @%L/ze‘¢2(")/2 and let [1] +1 = 8, then
g 1s eventually nonincreasing, and hence g(ni) > g(8k) for large k. Now we
note that 3712 f(n) < g(n) and hence Some1 9(Bk) = o0, since Y20, f(n) = oo.

Therefore we have

i_o: anf(n) = i_o:f(nk) > g:g(nk) > c+ ig(ﬁk)

for some ¢, which proves the lemma.

Proof of theorem. As in the proof Theorem 2(Griffin and Kuelbs, 1991)
it is standard argument to show that if Theorem 3 holds for #(n) nondecreasing,

positive and such that

Lyn < ¢*(n) < 3Lyn (2.5)

for large n, then Theorem 3 holds without the restriction (2.5). Hence we will
assume that (2.5) holds. The proof that J(¢) < co implies the probability in
(2.4) is zero just follows the proof of Theorem 2 (Griffin and Kuelbs, 1991)
using Theorem 2 and V? ~ nEX? which comes from the Brikhoff’s ergodic

theorem. Now we show that J(¢) = oo implies P(Sn > V.é(n) i.o.) = 1.
Since E(X2]]X| < C) > 0, for some C' > 0, we can choose B > 0 such that
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P(B<|X|<C)>0. Now

5 Xl (] < €)ELew 0

n

> B (B < | X < C)Me-as?(n)/z_
n=1 n
By the ergodic theorem,

S I(B < | Xua| < C) ~ nP(B < |X| < C)
k=1

hence by Lemma 4,

NB(n) _pe
P(B(S X201 (Konal = ) ELe o o) = 20) =
Also we can easily check by Borel-Cantelli lemma and ergodic theorem that
P(1X;1 >3 io|lXa],1Xa],...) = 0 and P(V2/n — EX?|IXi],1Xs,...) =
1. Hence by Lemma 3, P(Sn > Vo.p(n) i.o.1|X1|, D.CI ) =1 a.s.

Therefore we have

P(Sy > Vag(n) i.0.)

”/ > Vad(n) LX), 1Xal,..)dP

7

which completes the proof.
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