Journal of the Korean Statistical Society Vol. 23, No. 2, 1994

An LIL Via Self-Normalization for Sequences of Sign-Invariant Random Variables

DugHun Hong¹

ABSTRACT

Some extensions of the law of the iterated logarithm via self-normalization are obtained for sequences of sign-invariant random variables.

KEYWORDS: LIL, Self-normalization, Sign-invariant random variables.

1. INTRODUCTION

Let X_1, X_2, \ldots be a sequence of random variables and let

$$S_n = X_1 + \dots + X_n \qquad (n \ge 1),$$

$$V_n^2 = X_1^2 + \dots + X_n^2$$
 $(n \ge 1).$

The first result on the law of the iterated logarithm (LIL) via self-normalization was obtained by Marcinkiewicz(1937) who observed that for any symmetric distribution

$$\limsup_{n \to \infty} \frac{S_n}{(2V_n^2 L_2 V_n^2)^{1/2}} \le 1 \quad \text{a.s.}, \tag{1.1}$$

¹Department of Statistics, Hyosung Women's University, Kyungbuk, 713-702, Korea.

where $Lx = \max(1, \log_e x)$ and $L_2x = L(Lx)$. For this result the random variables need not be identically distributed, just independent and $V_n^2 \to \infty$ with probability 1. Later, results were obtained with a refinement of (1.1) by Griffin and Kuelbs(1991). They also treated identically distributed case. The purpose of this paper is to generalize Griffin and Kuelbs' LIL via self-normalizations to sequences of "sign-invariant" random variables. We also consider LIL via self-normalization for a sequence of exchangeable and sign-invariant random variables.

2. EXTENSTIONS TO SIGN-INVARIANT SEQUENCES

Let (X_n) be a sequence of random variables on a probability space (Ω, \mathcal{F}, P) such that every finite dimensional distribution function(d.f.) of the sequence is invariant under any changes in the sign of (X_n) . Such random variables were called "sign-invariant" (Berman,1962,1965). It is obvious that a sequence of independent random variables with distribution functions $F_n(x)$ of X_n is sign-invariant if and only if $F_n(x)$ is symmetric, i.e., every one-dimensional d.f. is invariant under changes in signs.

Lemma 1. Let $X_1, X_2, ...$ be sign-invariant random variables on a probability space (Ω, \mathcal{F}, P) . Then there exists a regular conditional distribution, say P^{ω} , for $X = (X_1, X_2, ...)$ given $\sigma(|X_n|, n \geq 1)$ such that for each $\omega \in \Omega$ the coordinate random variables $\{\xi_n, n \geq 1\}$ of probability space $(\mathcal{R}^{\infty}, \mathcal{B}^{\infty}, P^{\omega})$ are independent and $P^{\omega}(\xi_n = X_n(\omega)) = \frac{1}{2} = P^{\omega}(\xi_n = -X_n(\omega))$ for all n.

Proof. Let
$$B = \{\xi_1 > t_1, \dots, \xi_n > t_n\}, t_i \ge 0, i = 1, 2, \dots, n$$
. Note that
$$P^{\omega}(B) = \begin{cases} \frac{1}{2^n}, & \text{if } |X_i(\omega)| > t_i, & i = 1, \dots, n \\ 0, & \text{if not} \end{cases},$$

and

$$P(|X_1| > t_1, \dots, |X_n| > t_n) = 2^n P(X_1 > t_1, \dots, X_n > t_n).$$

Then

$$\int P^{\omega} (\xi_1 > t_1, \dots, \xi_n > t_n) dP(\omega)$$

$$= 2^{-n} P(|X_1| > t_1, \dots, |X_n| > t_n)$$

$$= 2^{-n} 2^n P(X_1 > t_1, \dots, X_n > t_n)$$

$$= P(X_1 > t_1, \dots, X_n > t_n).$$

This proves the Lemma.

The sequences (X_n) is "exchangeable" if the joint d.f. of (X_1, X_2, \ldots, X_n) say $G_n(x_1, \ldots, x_n)$, is a symmetric function for each n. According to the fundamental theorem of de Finetti, there exists a sub- σ -field of the σ -field \mathcal{F} and a conditional d.f. $G^{\omega}(x)$ such that the (X_n) are conditionally independent given \mathcal{G} with the common conditional d.f. $G^{\omega}(x)$. More specifically, one may write,

$$G_n(x_1, \dots, x_n) = \int_{\Omega} G^{\omega}(x_1) \cdots G^{\omega}(x_n) dP(\omega), \qquad (2.1)$$

where $G^{\omega}(x)$ is a d.f. for each $\omega \in \Omega$, and an \mathcal{F} -measurable function for each x. In general, for any set $H \in \mathcal{F}$,

$$P(H) = \int_{\Omega} P^{\omega}(H) dP(\omega), \qquad (2.2)$$

where $P^{\omega}(H)$ is the conditional probability of H computed under the assumption that the X_n are mutually independent with the common conditional d.f. $G_{\omega}(x)$.

The following lemma, due to Berman(1962), is used.

Lemma 2. If (X_n) are exchangeable and sign-invariant random variables, then in the representation (2.1), for almost all ω

$$G^{\omega}(x) = 1 - G^{\omega}(-x),$$

for all x, in the continuity set of $G^{\omega}(x)$.

Theorem 1. Let (X_n) be exchangeable and sign-invariant with $E(X_1^2) < \infty$ and let $\Delta = \{\omega : G_{\omega}(\cdot) \text{ is degenerate at } 0\}$. If ϕ is eventually nondecreasing and positive, then

$$P(S_n > V_n \phi(n) \text{ i.o.}) = 0 (= 1 - P(\Delta))$$

according as

$$J(\phi) < \infty (= \infty),$$

where

$$J(\phi) = \sum_{n=1}^{\infty} \frac{\phi(n)}{n} e^{-\phi^2(n)/2}.$$
 (2.3)

Proof. According to (2.2),

$$P(S_n > V_n \phi(n) \text{ i.o.}) = \left(\int_{\Delta} + \int_{\Omega - \Delta} \right) P^{\omega} \left(S_n > V_n \phi(n) \text{ i.o.} \right) dP(\omega).$$

For $\omega \in \Delta$, $S_n = V_n = 0$ a.s. for all n, hence $P^{\omega}(S_n > V_n \phi(n))$ i.o.) = 0; on the other hand, by Theorem 2(Griffin and Kuelbs, 1991) and Lemma 2, for almost all $\omega \notin \Delta$,

$$P^{\omega}(S_n > V_n \phi(n) \text{ i.o.}) = 0 (= 1)$$

according as

$$J(\phi) < \infty (= \infty).$$

Hence the theorem follows.

Theorem 2. Let X_1, X_2, \ldots be sign-invariant random variables with $V_n^2 \to \infty$ w.p. 1. If ϕ is nondecreasing and positive eventually and $J(\phi) < \infty$ where $J(\phi)$ is as in (2.3), then

$$P(S_n > V_n \phi(V_n^2) \text{ i.o.}) = 0.$$

Proof. We set $T_n = \xi_1 + \cdots + \xi_n$, $W_n^2 = \xi_1^2 + \cdots + \xi_n^2$. By Lemma 1 ξ_1, ξ_2, \ldots is independent and symmetric with respect to P^{ω} for all ω and by

the assumption $V_n^2 \to \infty$ w.p.1, $P^{\omega}(W_n^2 \to \infty) = 1$ w.p. 1. Hence it follows from Theorem 1(Griffin and Kuelbs, 1991) that

$$P(P^{\omega}(T_n > W_n \phi(W_n^2) \text{ i.o}) = 0) = 1.$$

Therefore we have

$$P(S_n > V_n \phi(V_n^2) \quad \text{i.o.})$$

$$= \int P(S_n > V_n \phi(V_n^2) \quad \text{i.o.} \quad ||X_1|, |X_2|, \dots) dP$$

$$= \int P^{\omega}(T_n > W_n \phi(W_n^2) \quad \text{i.o.}) dP = 0.$$

This completes proof.

Theorem 3. Let $X, X_1, X_2, ...$ be stationary, ergodic and sign-invariant with $0 < E(X^2) < \infty$. If ϕ is eventually nondecreasing and positive, then

$$P(S_n > V_n \phi(n) \quad \text{i.o}) = 0 (= 1) \tag{2.4}$$

according as

$$J(\phi) < \infty (= \infty),$$

where $J(\phi)$ is as in (2.3).

To prove this we need the following lemmas.

Lemma 3. Let $\{X_n, n \geq 1\}$ be a sequence of independent random variables with $P\{X_n = \pm x_n\} = 1/2$, and let $|x_n| \leq n^{1/2}$ for all large n and $(x_1^2 + \cdots + x_n^2)/n$ converges to a positive constant. If

$$\sum_{n=1}^{\infty} X_{n+1}^2 I(|X_{n+1}| \le C) \frac{\phi(n)}{n} e^{-\phi^2(n)/2}$$

diverges with probabilty 1 for some C > 0 and $\phi(n) \uparrow \infty$, then

$$P(S_n > (x_1^2 + \dots + x_n^2)\phi(n) \text{ i.o}) = 1.$$

Proof. Just follow the step 2 and step 3 in the proof Theorem 2 (Griffin and Kuelbs, 1991).

Lemma 4. Let ϕ be eventually nondecreasing and positive such that $L_2n \leq \phi^2(n) \leq 3L_2n$ for large n, and let $\sum_{n=1}^{\infty} f(n) = \infty$, where $f(n) = \frac{\phi(n)}{n}e^{-\phi^2(n)/2}$. Then if $\lim_{n\to\infty} \frac{1}{n}\sum_{i=1}^n a_i = \alpha(0 < \alpha < 1)$ where $a_i = 0$ or 1, we have

$$\sum_{n=1}^{\infty} a_n f(n) = \infty.$$

Proof. Let $\{a_{n_k}\}$ be the subsequence of $\{a_n\}$ such that $a_{n_k} = 1$ for all k, then $\lim_{n\to\infty} \frac{n_k}{k} = 1/\alpha$ and hence for large k, $n_k \leq (\left[\frac{1}{\alpha}\right] + 1)k$ where [x] stands for the integer part of x. Let $g(n) = \frac{(L_2 n)^{1/2}}{n} e^{-\phi^2(n)/2}$ and let $\left[\frac{1}{\alpha}\right] + 1 = \beta$, then g is eventually nonincreasing, and hence $g(n_k) \geq g(\beta k)$ for large k. Now we note that $3^{-1/2}f(n) \leq g(n)$ and hence $\sum_{n=1}^{\infty} g(\beta k) = \infty$, since $\sum_{n=1}^{\infty} f(n) = \infty$. Therefore we have

$$\sum_{n=1}^{\infty} a_n f(n) = \sum_{k=1}^{\infty} f(n_k) \ge \sum_{k=1}^{\infty} g(n_k) \ge c + \sum_{k=1}^{\infty} g(\beta k)$$

for some c, which proves the lemma.

Proof of theorem. As in the proof Theorem 2(Griffin and Kuelbs, 1991) it is standard argument to show that if Theorem 3 holds for $\phi(n)$ nondecreasing, positive and such that

$$L_2 n \le \phi^2(n) \le 3L_2 n \tag{2.5}$$

for large n, then Theorem 3 holds without the restriction (2.5). Hence we will assume that (2.5) holds. The proof that $J(\phi) < \infty$ implies the probability in (2.4) is zero just follows the proof of Theorem 2 (Griffin and Kuelbs, 1991) using Theorem 2 and $V_n^2 \sim nEX^2$ which comes from the Brikhoff's ergodic theorem. Now we show that $J(\phi) = \infty$ implies $P(S_n > V_n \phi(n) \text{ i.o.}) = 1$. Since $E(X^2I|X| \le C) > 0$, for some C > 0, we can choose B > 0 such that

$$P(B \le |X| \le C) > 0. \text{ Now}$$

$$\sum_{n=1}^{\infty} X_{n+1}^{2} I(|X_{n+1}| \le C) \frac{\phi(n)}{n} e^{-\phi^{2}(n)/2}$$

$$\ge \sum_{n=1}^{\infty} B^{2} I(B \le |X_{n+1}| \le C) \frac{\phi(n)}{n} e^{-\phi^{2}(n)/2}.$$

By the ergodic theorem,

$$\sum_{k=1}^{n} I(B \le |X_{k+1}| \le C) \sim nP(B \le |X| \le C)$$

hence by Lemma 4,

$$P\bigg(E\bigg(\sum_{n=1}^{\infty}X_{n+1}^{2}I\Big(|X_{n+1}|\leq C\Big)\frac{\phi(n)}{n}e^{-\phi^{2}(n)/2}\Big||X_{1}|,|X_{2}|,\ldots\bigg)=\infty\bigg)=1.$$

Also we can easily check by Borel-Cantelli lemma and ergodic theorem that $P(|X_j| > j^{1/2} \text{ i.o.} | |X_1|, |X_2|, \dots) = 0$ and $P(V_n^2/n \to EX^2 | |X_1|, |X_2|, \dots) = 1$. Hence by Lemma 3, $P(S_n > V_n \phi(n) \text{ i.o.} | |X_1|, |X_2|, \dots) = 1$ a.s. Therefore we have

$$P(S_n > V_n \phi(n) \text{ i.o.})$$

$$= \int P(S_n > V_n \phi(n) \text{ i.o.} ||X_1|, |X_2|, \dots) dP$$

$$= 1,$$

which completes the proof.

REFERENCES

- (1) Bai, Z.D. (1989). A theorem of Feller revisited. The Annals of Probability, 17, 385-395.
- (2) Berman, S.M. (1962). An extension of the arc sine law. The Annals of Mathematical Statistics, 33, 681-684.

- (3) Berman, S.M. (1965). Sign-invariant random variables and stochastic process with sign-invariant increments. *Transactions of American Mathematical Society*, **119**, **216–243**.
- (4) Chow, Y.S. and Teicher, H. (1988). Probability Theory: independence, interchangeability, martingales, Springer-Verlag, New York.
- (5) Einmahl, U. (1989). The Darling-Erdös theorem for sums of i.i.d. random variables. *Probability Theory and Related Fields*, 82, 241–257.
- (6) Griffin, P.S. and Kuelbs, J. D. (1991). Some extensions of the LIL via self-normalizations. The Annals of Probability, 19, 380-395.
- (7) Marcinkiewicz, J. and Zygmund, A. (1937). Remarque sur la loi du logarithme itéré. Fundamenta Mathematicae, 29, 215-222.