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ABSTRACT

Effects of temporal aggregation on estimation for ARMA models
are studied by investigating the Hannan & Rissanen(1982)’s procedure.
The temporal aggregation of autoregressive process has a representation
of an autoregressive moving average. The characteristic polynomials as-
sociated with autoregressive part and moving average part tend to have
roots close to zero or almost identical. This causes a numerical problem
in the Hannan & Rissanen procedure for identifying and estimating the
temporally aggregated autoregressive model. A Monte-Carlo simulation
is conducted to show the effects of temporal aggregation in predicting
one period ahead realization.
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1. INTRODUCTION

Time series are often obtained in temporally aggregated form. For exam-
ple, when economic theory suggests a daily model for an economic variable, the
economic data may be available only in weekly totals. Also, while an engineer-
ing model for a variable needs to be on second basis, the engineering variable
may be observed only on minute basis because of cost consideration. In these

cases, instead of the original time series, say z;, temporally aggregated series

N=21F. T, Y2 = Tt + o+ Tomy o Yn = Tl oot T (101)

are available for some positive integer m, called order of aggregation.

Among the important contributions to the identification of temporally ag-
gregated autoregressive( AR) process are Telser (1967), Ameniya & Wu (1972),
Brewer (1973), Abraham (1982), Tiao (1987), Stram & Wei (1986), Nijman
& Palm (1990), Wei & Stram (1990), Shin & Kim (1993), Shin & Pantula
(1993), and references in Wei & Stram (1990). In almost all the above works,
they do not handle estimation for temporally aggregated series. Telser (1967)
and Nijman & Palm (1990) report difficulties in identifying and estimating
temporally aggregated autoregressive moving average(ARMA) process. Shin
& Kim (1993) study estimation for unit root in temporally aggregated first
order autoregressive process.

Hannan & Rissanen (1982) propose a three-stage procedure for identifying
and estimating ARMA process. For analysis of temporal aggregation, we se-
lect the Hannan & Rissanen as an estimation procedure because each stage
of the Hannan & Rissanen’s procedure reveals many aspects of estimating
ARMA process. Many authors have been interested in the Hannan and Rissa-
nen (1982), among others Poskitt (1987), Hannan and Kavalieris (1984). We
study the effect of temporal aggregation on Hannan & Rissanen procedure in
estimating and identifying temporally aggregated model from data y; when
the original process z, is a stationary AR(p) process. It is well known that v,
has an ARMA(p, ¢) representation with ¢ = [(p+1)(m —1)/m], the largest in-
teger not greater than (p+1)(m —1)/m. However, if we estimate ARMA(p, ¢)
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model for y;, we confront a severe numerical instability problem because some
roots of the characteristic equation associated with autoregressive part and
those with moving average part are both close to zero and / or are nearly
identical. In fact, Stram and Wei (1986) show that there are cases in which
the ARMA(p, q) representation can be reduced to lower order ARMA model.
We study an estimation procedure which avoids the instability problem. The
procedure adopts the Hannan & Rissanen(1982) strategy which is an order
selection rule for ARMA process. If a temporally aggregated AR series has
both autoregressive roots and moving average roots close to zero, or if roots
corresponding to autoregressive part and moving average part are nearly iden-
tical, the order selection rule automatically drops some variables associated
with those roots.

In a Monte-Carlo experiment, we compare the prediction mean squares
errors of two predictors for y,41. One predictor is computed from the true
ARMA(p, ¢) model with the true parameter values. The other predictor is
computed from the model selected by Hannan & Rissanen procedure in which
the parameters are estimated. We show that the procedure yields predictor
comparable to that obtained from the true model.

In section 2, a model for temporally aggregated autoregressive process is
presented. In section 3, effects of aggregation on estimation and prediction
are discussed. In section 4, a procedure for estimation of temporally aggre-
gated autoregressive process is proposed. In section 5, a result of Monte-Carlo

simulation is reported.

2. MODEL FOR TEMPORAL AGGREGATION
Consider
T+ 0121 + daxig + o+ Ppip, = €4 (2.1)

where {¢} is an iid (0, 0?) sequence. We assume that the roots A;,..., A, of

the characteristic equation

AP+ g NP h, =0 (2.2)
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lie inside the unit circle. This means that {z;} is stationary if a stationarity
condition on z( is imposed.

In Harvey(1981, p44), we know that y; = >™ | Tym_m+: has a representa-
tion of an ARMA(p, ¢) process. In fact, one may easily show that y, has the
following ARMA(p, q) representation

Y + Q1Ye—1 + L + apyt_p = €; + 61€t_1 + e + /qut—q,t = ]., B 1) (23)

where {e;} is an iid(0, o2) process, the autoregressive coefficients (a, ..., a,)

are coeflicients of (B,..., B?) in

1+zpjai3i =(1=A'B)(1—=A}B)---(1 - A\I'B), (2.4)

=1
the moving average coefficients (31, B2, ..., 3,) are determined by

r—hm

q—h
O'Z Z ﬁH—hﬂi = 052 Z At hm A, h = 07 -4, (25)
=0 =0
r=(p+1)(m —1) and (ay,...,a,) is the coefficient of (B*,..., B") in
1+Y aB ' =(1+B+-+B" I (1+A\B+--+AT'B™ ). (2.6)
i=1

See Theorem 2.1 of Shin & Pantula(1993). Amemiya & Wu(1972) point out
that the moving average coefficients can be chosen in the invertibility region,
that is, the region in which all the moving average roots associated with (2.3)
have absolute values less than one. In fact, by Wilson(1969) which can be found
in Box & Jenkins (1976, p203), we can compute such 8’s in the invertibility

region.
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3. EFFECTS OF AGGREGATION ON ESTIMATION
AND PREDICTION

In this section, we describe the effects of aggregation through AR(2) model
of {2;}7™. In estimating the model for {y;}}, one may try maximum like-
lihood estimation for the ARMA(p, ¢) model of y;. However, as seen later,
the ARMA(p, q) fit for y; contains an unidentifiability or near unidentifiability
problem. Let us consider an AR(2) process for {z;}

(1 - /\IB)(]. — AzB):L‘t = €. (31)
From (2.3), the temporal aggregate y; has an ARMA(2,2) representation
(1 — VlB)(l - VzB)yt = (1 - €1B)(1 - €2B)€t, (32)

for some vy, v, &1, &. In Table 1, we tabulate vy, vy, &, & for A1, A, € {0.8,
0.4,0.0,—0.4,~0.8} and m = {3,6,7,12} computed from (2.4) - (2.6) for
p=2.

As seen in Table 1, there are many cases in which both v; and & are close
to zero or almost same for m = 6,7,12. Moreover, even in those cases the
other autoregressive root v has near zero root. However, this phenomena are
unclear for m = 3. This causes the parameters associated with the roots,
which are close to zero, almost unidentifiable. Also, one of the autoregressive
roots is almost same as &, for A\; = —); and even m. Hence this cancellation
effect makes the model (3.2) reduce to ARMA(1,1). In general, if A\]* = AT* and
A1 # Az, then the orders for y; can be reduced to lower orders( See Stram and
Wei(1986)). Therefore, estimation of the roots becomes hard. In both cases, if
we estimate ARMA(2,2) model, we are confronted with numerical instability
caused by unidentifiability or near unidentifiability.

For several AR(2) processes of z;, we compare three estimation procedures
for y,’s through the prediction of y,+1; ARMA(2,2) fitting using estimated
parameters, ARMA(1,1) fitting using estimated parameters, and ARMA(2,2)
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fitting using true parameters obtained from the roots in Table 1. Correspond-
ing predictions of y,41 are ¥ny1, Ynt1, Yns1, which are given below for some
m,n, Ay and A;. In estimating the parameters of the ARMA(2,2) model and
ARMA(1,1) model, we use the estimator from the second stage of Hannan &

Rissanen procedure with p = 2 and ¢ = 2. See stage 2 in section 4.

Table 2. The forecasts of y,,, for several simulated series y,’s

m noA Az Ynt1 Ynt1 Ynt1 Ynt1
3 25 8 4 —12.4800 —518.5286 x 10° —10.5569 —2.5624
6 50 4 .8 3.1817 —728.1209 x 107 4.2133 0.7333
7 100 —4 —-.8 —1.5643 438.3446 x 10° —0.0520 0.5702
12 25 .8 8 25.5937 927.2959 29.3678 13.7317
12 100 -.8 .8 7.3593 —495.9974 x 101° 0.9571 0.2288

From the above example, we know that ¢,,; have very large forecast values.
This dues to the fact that, as seen in Table 1, for example, for (m,n, Ay, Ay) =
(3,25,.8,.4), one of the AR roots and one of the MA roots are 0.0640 and
—0.0132, respectively and hence are all close to zero. Therefore, the true
model for {y;} is almost ARMA(1,1). If we try to estimate ARMA(2.2) model
for {y.}, the parameter estimate would have very large variance and hence
estimated AR roots or MA roots fall outside the stationrity or invertibility
region making y,4;1 very large. It seems that the reduced order model provides
reasonable prediction for y,y;. We will discuss these facts in more detail
m section 5, a Monte-Carlo simulation. Therefore, estimating a lower order
ARMA model gets around the unidentifiability problem and the numerical
problem when we have near cancellation or near zero in the characteristic roots.
However, when we have neither near cancellation nor near zero in the roots, the
Hannan & Rissanen procedure would automatically select ARMA(2,2), which
would give good forecast of y,,1.

In particular, we have the following theorem which tells us that the tem-

porally aggregated series become a white noise as m increases.
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Theorem 1. Let z; and y; be defined in (2.1) and (1.1) respectively.
Assume that all the roots Ay,..., A, of the characteristic polynomial (2.2) lie
inside the unit circle. Then the autocovariance function of ¥, tends to that of

white noise as m goes to infinity.

Proof. Note that all the roots A{",..., AT of the characteristic polyno-
mial associated with autoregressive part of y; decay to zero as m increases.
Also from (2.6), ai,...,an-1 all tend to one and a,...,q, all tend to zero.

Therefore, equation (2.5) becomes

q q—h
oly Bi=0l 0l BinBi=0,h=1,2,....,¢q
=0 =0

Hence, 31, ..., 5, all tend to zero and the theorem follows.

4. ESTIMATION FOR TIME SERIES MODEL OF
TEMPORAL AGGREGATION

In section 3, we see that there are many situations in which a low order
ARMA model is a good approximation to the true ARMA(p,¢) model for
y,. However, the question that to what extent the orders should be reduced
remains. Actually, the orders are affected by the values A;,..., A, and the
order of aggregation, m.

We investigate the Hannan & Rissanen (1982) with Kavalieris(1991)’s mod-
ification. The procedure, by dropping insignificant parameters, avoids instabil-
ity problem and yields smaller prediction mean squares error than that based

on full orders model estimation. We state the procedure below.

Stage 1. An autoregression of order k is estimated by regressing v,
on —yi_1,...,—yi—r and applying the Akaike information criterion. The au-
toregressive coefficients ¢;(k) of —y,_;,7 = 1,...,k, are used to estimate the
innovations

&(k) = Z_: &5 (k)ye-j,
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t=1,2,...,n, where ¢o(k) =1, y, = 0, t <0.

Stage 2. For each (p, ¢), estimate the parameters {&;, j = 1,...,p}
and {B;, 7 =1,...,q}, by regressing y: on {y;—;, j = 1,...,p} and {€:_;(ko),
J=1,...,q}, where ko is the regression order obtained in Stage 1, p < pg and
9 < qo, po 1s the true value of p and ¢y = [(po+1)(m—1)/ m]. These parameters
are used to determine order (p, ¢) of model by an information criterion, BI(

below.

Stage 3. With (p, ¢) selected in Stage 2, apply the maximum likelihood
estimation for model (2.3) and compute estimates of oy, ..., a,, By, ..., By-

In Stage 1, we select the order k£ by minimizing the Akaike information criterion

AIC(k) =logo; + 2k [ n,&} = Zétz(k)/ n.
=1
In Stage 2, we choose model order (p,q) which minimizes the information

criterion
BIC(szyq) = log sf)yq +(p+¢q)log n / n,

where s is an estimate of residual variance o2 from the regression in stage 2.

Hannan & Kavalieris(1984) show that the use of Hannan & Rissanen’s esti-
mator of o2 tends to introduce common factors into the estimates of autoregres-
sive polynomial and moving average polynomial. Such an overparametrized
model may also lead to instability in the stage 3 of the procedure, the maximum
likelihood estimation stage. Hannan & Kavalieris(1984), Kavalieris(1991), and
many others propose a number of modifications to the order estimation pro-

cedure in order to overcome the overparametrization. We use Kavalieris's

2

modification Opa

=Y}, €/ n, where
€ =Y+ QY1+ -+ QpYip — B181-1 — - — Pr€iy,

t=1,2,...,n, & =0, t <0. Kavalieris’s estimator produces less overestima-

tion of order (p, q).
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The procedure underestimates the order in the aggregated autoregressive
process because some roots of the characteristic polynomials of the aggregated
process are close to zero or nearly canceled out. The procedure, by dropping
insignificant parameters, avoids the instability problem and yields smaller pre-
diction mean squares error than the predictor based on full model estimation.

This study indicates that we should also consider small model order for
estimating temporally aggregated ARMA when we use methods such as the

maximum likelihood estimation and the least squares estimation.

5. MONTE CARLO SIMULATION

In this section, we analyze Hannan & Rissanen procedure by a Monte Carlo
experiment. Let x; be an AR(2) process given in equation (3.1) and y; be a
temporal aggregate of z; of order m. Assume we have {y;,...,y,} as a data

set, from which we estimate model for y,. Note that the true model for y; is

(3.2).

We first compare two estimation procedure; ARMA(p, ¢) fitting p = 2 with
q = qo = [3(m — 1)/m], and our estimation procedure with p < 2 and ¢ < ¢o.
We consider A;, Ay € {.8,.4,.0,—.4, —.8}. Since A; and A; have modulus less
than one, we expect that a good procedure produces estimates of autoregressive
roots vy and v, and moving average roots & and £; inside the unit circle. In
Table 3, we report numbers of cases in which some estimates of vy, vy, &, &
have modulus greater than or equal to one based on 1000 replications. In the
cases, the parameter estimates are outside the stationarity region(|r;| > 1 or
[v2] > 1) or the invertibility region(|€;] > 1 or |€2] > 1). The error sequence
{e;} is simulated by RNNOA of IMSL library. The error variance o? is set to
1. In Hannan & Rissanen approach, the estimates are from the second stage

with p < 2 and ¢ < qo.

In Table 3, ARMA(2, ¢o) fitting for (A, A2) = (.8,.8) and (—.8, —.8) with

odd m yields very large number of cases outside the stationarity or invertibility

333
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region. The number of these cases decreases as the order m of aggregation
increases, but for each m it tends to increase as the number n of observations
of y; increases. For the above (A;, A;) combination, the approach reduces it
dramatically as m increases for each n. For n = 100 and m = 12, the number
reduces from 274 of ARMA(2, ¢o) fitting to 9 of the fitting based on Hannan
& Rissanen procedure. Also, for (A1, A;) = (.8,.4) and (.4, .8) the proportion
of the reduction tends to increase as m increases for each n. In case that
the autoregressive roots and the moving average roots are both close to zero
or almost same, the approach yields much less cases outside the stationarity
or invertibility region than ARMA(2, ¢o) fitting. In fact, the ARMA(2, ¢o)
fitting causes unidentifiability problem and so the estimators from ARMA(2,
o) fitting are very unstable. For AT = A' and Ay # Ay, as Stram and Wei
(1986) indicates, one of {1, A;} coincides with one of {£;,¢,;} and hence our
procedure is much better than ARMA(2, ¢o) fitting. It is more clear as m
increases.

Hannan & Rissanen approach tends to underestimate the orders of ARMA
model for y;. However, the underestimated model is also a good estimation for
the true model. We investigate the performance of the model estimated from
Hannan & Rissanen procedure by studying the behavior of the predictors of

Ynt1. Denote the model for y, estimated from the procedure by
Yo + 1y + @Yoz = €+ Precr + Baera.
A predictor for y,4; is
Jnt1 = —@1Yn — @Yn_1 + PrEn + Paén_r,
t=1,2,...,n, where

€& =Yt + oy 1 + QYo — Pr€4-1 — B264_2,

t=1,...,n,and y;, = & = 0 for t <0. For simplicity of computation, we use

(&1, &, B1, B2) obtained in the second stage of the procedure instead of the
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estimator in the third stage. Note that, for example, 8, = 0 if order selected
for moving average part is less than 2. For comparison, we consider another
predictor based on the true model. Let §,41 be a predictor of y,4; based on

the true model for y;,

?Jn+1 = =Yy — 2lYn— + /Hlén + 62671—17

where
ér = Y + onYi—1 + Q2yp—o — P1€4121 — B2éi_2,

t=1,...,n,and y; = é; = 0 for t < 0. Note that we use the true value of
(a1, az, f1, B2) in computing yn4+1. We do not study the predictor based on
parameters of ARMA(2, o) because as seen in Table 2, the predictor is very

wild and hence we do not need to include in our comparative study.

In Table 4, we report sample mean squares error of the predictors based on
1000 replications. The sample mean squares error for g, 1s smaller or slightly
larger than that for §,41 except n = 25. When the number of observation of
the aggregated series y; is small (n = 25), the underlined nineteen cases out
of 100 combinations of (A1, A2) have large sample mean squares errors. This is
because there are few samples which produces very large predictor which makes
the sample mean squares error very large. However, except the underlined
cases, the sample mean squares error for 7,41 is not much larger than that for
Unt1- Recalling that the mean squares error for ,41 is based on true model,
we see that §,41 1s a reasonable predictor of y,4;. From this investigation
we know that the model estimated by Hannan & Rissanen procedure is a
good approximation to the true model even though the estimated model have

underestimated orders.
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Table 3. Number of cases in which parameter estimates are outside the sta-
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tionarity or invertibility region out of 1,000 replications

ARMA(2,4g) Fitting
m Az .8 4 0 —.4 —.8 .8 4 .0 —_ — .8 4 -4 —.8
A = 25 n = 50 = 100
3 .8 822 432 235 169 138 900 563 312 199 146 915 640 389 238 178
3 4 393 156 104 105 94 536 172 94 86 75 652 200 77 7 119
3 .0 234 101 86 110 115 274 86 78 85 i09 394 86 58 86 101
3 —.4 189 96 81 135 355 212 82 72 138 472 242 81 76 150 552
3 -.8 126 84 127 350 756 163 83 120 489 808 198 a7 109 577 828
6 .8 510 180 166 169 152 638 255 228 166 172 653 294 237 223 193
6 .4 204 116 92 95 923 214 78 76 68 82 319 86 68 67 83
6 .0 169 89 91 91 93 171 81 86 72 74 226 7T 58 75 75
6 -4 164 79 78 87 146 171 84 80 86 138 215 62 52 93 129
6 —.8 159 85 100 144 200 167 92 90 130 182 209 64 87 153 127
7 .8 409 190 163 147 139 531 207 184 153 138 610 249 195 165 154
7 4 185 107 80 101 83 223 88 83 80 65 254 64 58 64 60
7 0 152 102 92 86 103 153 76 83 77 92 201 74 70 57 82
7 —.4 143 86 87 115 201 176 83 73 85 257 190 60 73 85 276
7 —.8 138 74 92 183 600 140 70 104 231 647 150 63 77 289 661
12 .8 203 114 118 115 123 212 118 105 87 106 274 109 104 104 97
12 4 125 81 99 88 93 103 74 74 73 71 133 60 60 53 69
12 .a 123 92 88 90 108 109 69 91 73 83 112 77 69 58 68
12 —.4 127 76 85 85 121 126 78 76 76 102 96 62 60 65 134
12 -—.8 113 89 89 142 203 95 74 80 136 192 94 62 71 159 122
Hannan & Rissanen Fitting
m Ao .8 4 .0 —.4 -~.8 .8 4 .0 —.4 —.8 .8 .4 .0 —~.4 —.8
Ay = 25 n = 50 = 100
3 .8 563 231 104 72 27 545 244 108 61 15 573 237 98 36 6
3 .4 227 63 14 17 10 218 27 10 8 7 272 5 o 0 3
3 .0 109 27 18 21 50 84 9 8 5 14 79 6 1 5 2
3 -4 77 10 12 52 271 59 7 3 14 251 31 0 1 [ 277
3 —.8 35 9 43 255 639 18 6 20 284 689 12 3 6 304 797
6 .8 297 87 66 53 66 293 58 35 33 32 305 26 8 9 4
6 4 96 29 14 14 12 59 6 [ 8 8 27 6 1 2 4
6 .0 65 18 19 21 20 43 7 0 5 7 14 1 1 1 1
6 —.4 65 12 8 23 38 34 5 3 6 13 7 3 1 3 6
6 —.8 59 15 20 44 62 28 6 2 11 56 11 1 3 4 50
7 .8 219 76 52 57 51 238 47 25 21 19 226 12 5 4 7
7 4 75 19 14 12 17 41 3 5 3 1 12 0 1 0 1
7 0 61 22 10 20 27 27 4 4 6 5 7 2 2 0 4
7 -4 49 18 13 26 126 14 3 2 3 83 7 2 4 2 35
7 -.8 50 9 28 98 416 20 2 13 T4 310 9 o] 3 37 203
12 .8 99 27 34 22 25 42 9 11 7 5 9 4 6 3 5
12 4 38 17 12 18 14 8 7 7 1 1 4 2 0 3 2
12 .0 25 15 27 18 18 8 3 6 6 4 1 1 1 2 3
12 —.4 27 11 8 11 44 10 7 5 4 12 4 2 1 2 3
12 —.8 29 11 12 35 95 5 2 4 9 50 1 1 3 5 19
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