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Variable Selection Criteria in Regression!

Choongrak Kim'

ABSTRACT

In this paper we propose a variable selection criterion minimizing
influence curve in regression, and compare it with other criteria such as
C, (Mallows 1973) and adjusted coefficient of determination. Examples
and extension to the generalized linear models are given.
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1. INTRODUCTION

Suppose we wish to establish a linear regression model for a response Y
in terms of predictor variables Xj,..., X which are all possible candidate
variables. We call a regression model based on all candidate variables as the
full model. For parsimonious modelling, we choose only part of k variables,

and call this model as the current model defined as

Yi=Fo+ 5Xuit+ -+ B Xpmite,1=1,...,n (1.1)
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where ¢;’s are iid with E(e;) = 0 and var(e;) = o%. To check the adequacy of

the current model, many criteria were suggested. Among them, Mallows’C,

(Mallows 1973) defined as
__ RSS,

s2

C, —(n—2p) - (1.2)

is most widely used. Here, RSS, is the residual sum of squares under the
current model and s? is the residual mean square from the full model. C,
Is a criterion minimizing the mean squared errors for the current model, and

closely related with the adjusted coefficient of determination
2 _ Nz 2
Rap =1- (TL - l)(l - Rp)/(n —p)

where Rf) is the coefficient of determination.

Note that C, is very sensitive to outliers since RSS, = ¥ e? where ¢; =
y; — y; and @; 1s the fitted value of y; under (1.1). Undesirable features of
Cp are discussed in detail by Miller (1990). To be more specific, let the jth
observation have large residual but not influential to 3. This situation occurs
when the jth observation is located around the middle of X-space. Then,
the leverage of z; is quite small, and the influence of Jth observation on B
is negligible even though e; is large. Therefore, an adequate model with one
or few outliers which are not influential may be regarded as inappropriate if
C) is used. This situation will be numerically explained in Section 3.2 throgh
an artificial data set. In this paper, we propose a variable selection criterion
K,, defined in Section 2, which is aimed to minimize the overall influence. In
Section 2, K, is defined and justified. Also, reference value is given. Examples
are given in Section 3, and extension of K, to generalized linear models with

an example is in Section 4.
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2. A CRITERION MINIMIZING INFLUENCE

Consider a linear regression model y = X3 + €, then the infinitesimal
perturbation approach is obtained by specifying ¢; ~ N(0,0%/w;), where

w'_{w, ifj =i
7711, otherwise

and 0 < w < 1. Under the specification, the weighted least squares estimator
1s Bw = (X'WX)'X'Wy with W = diag{w;}. Pregibon (1981) showed that
o s X'X) " 1x:(1 — w)e;
5 g, XXX —w)
{1 = (1 —w)hy;}
where h;; is the ith diagonal element of H = X(X'X)™'X'. The effect of

infinitesimal perturbations of the variance of the ¢th data point is obtained by

differntiation of Bw, lLe.,

- a - (X’X)'lx'ei
A:Bw = —ﬂw = - 2°
ow {1 — (]. — w)h,-i}
Evaluation at w = 1, A,[;l, describes local changes in Bw at the usual least
squares solution. This function is termed the influence curve of B in the
literature of robust and resistant estimation. One of scalar versions of Aﬁl

can be
C: = ABX'XAB,/po?
= C?hii/p0'2.

The reason for choosing w = 1 is geometrically justified by Cook(1986). If
the assumed model is good it will be robust to the infinitesimal perturbation

of each data point, i.e., 3 C; will be small. Therefore, we suggest to use

2

», C; as dimensionality selection in regression. Since ¢* is usually unknown

we replace it by s%, residual mean squares from the full model. To be useful

Y C; can be adjusted as

n 26?}1“‘ ‘
L 2p)

K, =
P p 3
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in view of Cp. Note that ), is compared with p since E(C,) ~ p if an equation
with p — 1 parameters is adequate, i.e., we choose a regression equation with
Cp < p. Reference value for K, is similarly obtained. By letting hy; ~ p/n,
average of leverages, we have E(3 e?h;;) ~ p(n — p)o?/n if the model is ade-
quate. Therefore, we choose a regression equation with K, < p. Note that K,

is a weighted version of C, with weight h;;.

3. EXAMPLES

3.1 Hald Data.

For the Hald data (see Draper and Smith (1981) for details) we have n = 13
and s* = 5.983 from the full model fitted to all four predictor variables. C,
and K, are listed for p = 2,3,4 in Table 1. We see that the fitted model with
X1 and X is preferred over all others by both C, and K,.

Table 1. €, and K, in Hald Data

p Variables Cp Variables K,
4 138.7 2 112.7
2 2 142.5 4 116.0
1 202.5 1 161.8
3 315.2 3 274.3

1,2 2.7 1,2 1.0

3 1,4 5.5 1,4 3.4
3,4 224 3,4 20.3

2,3 62.4 2,3 58.9

1,24 3.0 1,2,4 1.0

4 1,2,3 3.0 1,2,3 1.3
1,3,4 3.5 1,3,4 1.5

2,3,4 7.3 2,3,4 4.9
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3.2 Artificial Data.

For X; = 1(1)20, we generate 20 ¢;’s from N(0,.25), and set y; = i +¢€;, 1 =
1,...,20. Also, we create two irrelevant variables X, and X3 from Unif(0,1)
and B(20,.5), respectively. X;, X3, X3 and Y are listed in Table 2. Here,
we have n = 20, and s = .19 from the full model. We apply C, and K, to
this artificial data set, and see whether X is successfully chosen. As shown
in Table 3, K, is quite successful, however, C, is not. C, for X is 8.6, and
one will hesitate to choose X, if he or she relies on C,. Instead, he or she
will choose X; and Xs. Our question is that why K, choose X successfully
and C, do not. One possible answer is given in Figure 1 containing plot of
e; = y; — 9; and hy; from Y = fp + 51X, + €. Residuals with low leverages are
quite large and residuals with high leverages are quite small. If the relation
between residuals and leverages is the opposite pattern, the result will be
converse. Note that a small change of z-values away from the middle (i.e.,
z-values with high leverages) will change A significantly. This is why most
influence measures are increasing functions of both the residual and leverage.

In fact, the effect of leverage is inserted to K, but not C,.

Table 2. Artificial Data

X1 X X3 Y
1 0.35 11 1.15
2 0.01 7 2.00
3 0.73 8 2.87
4 0.21 11 3.92
5 0.75 13 5.05
6 0.13 12 6.14
7 0.61 9 6.95
8 0.90 8 7.89
9 0.93 9 9.17
10 0.93 13 10.33
11 0.43 14 11.39
12 0.25 8 11.63
13 0.66 6 12.75
14 0.57 9 13.70
15 0.81 11 14.91
16 0.20 11 16.34
17 0.17 9 17.30
18 0.69 10 18.23
19 0.13 12 19.20

20 0.78 15 20.08
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Table 3. R?, R?;, C,, and K, in Artificial Data

Variables R? R?, Cy K,
X 99.9 99.9 8.9 1.64
X3 6.0 0.8 20000 16421.76
X5 0.5 0.0 20000 19005.16
X1, X5 99.9 99.9 2.6 1.91
X1, X, 99.9 99.9 10.1 3.23
X5, X3 6.3 0.0 20000 16213.20
X1,X9, X5 99.9 99.9 4.0 2.47

Figure 1. Residuals and leverages in Artificial Data
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4. EXTENSION TO GLMS

4.1 Deviance, Pearson x?, and K,.

In the generalized linear models (McCullagh and Nelder 1989), deviance
and Pearson x? are often used as goodness-of-fit measure. Suppose that
Y1,...,Yn are independent observations having a density in the exponential
family with the form

F(yi: 0:, 8) = exp{(wibi — b(0:))/ai($) + (i, 8)

for some functions a;(-), b(-), and ¢(-). Let g(p;) = n; = %8, where p; = E(Y;)
and g is a link function. Deviance is defined as

D =23 {ui(B: — 0:) — b(B:) + b(6:) } [ai($

where 6; and éi are estimates of §; under the maximal model and the cur-
rent model, respectively. The other measure of discrepancy is the Pearson x*
statistic, which takes the form

X —E(yz fLi) /V i)

where V(ji;) is the estimated variance function for the distribution concerned.
Both the deviance and the Pearson x? are compared with XZ distribution.

Based on the same arguments as in the linear model (see Section 2), we
can easily define K, in the generalized linear models as

= n2r2h*

where r; = (y; — f1:)/\/V(fi;) and kY is the i-th diagonal element of H* =
VI/2X(X'VX)'X'V'/2 Therefore, K, is a weighted version of the Pearson
x? with weight h}. We will use x2 as a reference distribution to K.

4.2 Tuberculin response Data.

Fisher (1949) published some data consisting of 16 measurements of tuber-
culin response to four treatments. These were applied in a Latin square design
so that the effects were not confounded with type of cow and site. Following
the structure of design and notations of Baker and Nelder (1978, Appendix

299
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D.3), we use the log-linear model and for simplicity let X, = A X, = B,
X3 = cow, X; = site. We compute D, 2, and K, with the refrence values
x4s(a) in Table 4, and see that all the three measures give the same result ;

)(27 X3, and X4.
Table 4. Goodness of fit measures D, x?, K,

model d.f. | deviance (D) | Pearson (x*) | K, x5 (.05)
null (1) 15 265.30 278.73 278.73 25.00
X1 14 265.28 278.69 278.69 23.68
X 14 203.09 210.85 210.84 23.68
X1, X, 13 203.07 210.79 212.72 22.36
X4 12 232.38 238.09 228.60 21.03
X3 12 91.76 92.43 98.51 21.03
X1, X, 11 232.37 238.14 238.66 19.68
X1, X5 11 91.74 92.39 98.16 19.68
X2, X4 11 170.17 177.60 174.73 19.68
X2, X3 11 29.55 29.47 30.78 19.68
X1, X5, X, 10 170.15 177.45 175.18 18.31
X1, X5, X3 10 29.53 29.48 30.68 18.31
X3, X, 9 58.84 58.78 35.27 16.92
X1, X0, Xy || 8 58.82 58.74 56.01 | 15.51
Xo Xa, Xy || 8 1.41 1.42 1.35 || 15.51
X1, X0, Xa, Xa || 7 1.40 1.41 130 || 14.07

5. CONCLUDING REMARKS AND FUTURE
RESEARCH

Many statistical packages use C, as a variable selection criterion. As Miller
(1990) indicated, C, has undesirable features. In this paper, we suggest a
variable selection criterion K, which is aimed to minimize sum of influence of
each observation. Based on limited experiences, K, works well and is better
than C, in some circumstances.

As noted by two referees, systematic comparison of K, with C, should be
done. In this study, a careful choice of appropriate models is necessary. Also,
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consideration of the weighted version of C, is desirable. In the GLMs, the
robust version of the AIC (Akaike Information Criterion) can be a good sub-
stitute for K. These problems deserve future research. Also, the performance
of K, in the sense of model parsimony should be studied because C, tends to
select unnecessarily large model.
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