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Strong Large Deviations Theorems for the
Ratio of the Independent Random Variables!
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ABSTRACT

In this paper, we prove a strong large deviations theorem for the
ratio of independent random variables with error rate of O(n~"). To
obtain our results we use the inversion formula for the tail probability
and apply the Chaganty and Sethuraman’s(1985) approach.

KEYWORDS: Large deviations, Tail probability, Inversion formula,

Ratio of random variables.

1. INTRODUCTION

Let {T,,,n > 1} be a sequence of random variables. One of the important
problems in probability theory is to study the behavior of the limit probability
for large deviations, namely , P.(T,, > t,) where {t.} is a sequence of constants

increasing to co. The result to give the asymptotic expressions for log P.(T, >
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t,) is called the weak large deviations result and the result on P.(T, > t,)is
called the strong large deviations result.

Since Cramér (1938) and Chernoff (1952), many generalizations have been
made in large deviations. For instancesee Sievers (1969), Steinebach (1978),
Bahadur and Zabel (1979), Vandemaele and Veraverbeke (1982). However,
most of large deviations theorems including the results mentioned above are
weak large deviations results. Bahadur and Rao (1960) obtained a notable
strong large deviations result on sample mean of independent and identically
distributed (i.i.d.) random variables. Recently, Chaganty and Sethuraman
(1987) extended Bahadur and Rao’s (1960) result by considering an arbitrary
sequence of random variables which are not necessarily sums of i.i.d. random
variables under some restrict conditions for the moment generating functions.

The result of Chaganty and Sethuraman (1987) is extended by Choi, Kim
and Jeon (1992), where they obtained a strong large deviations result for the
ratio of independent but arbitrary random variables. Chaganty and Sethura-
man’s (1987) strong large deviations theorem and Choi, Kim and Jeon’s(1992)
give the asymptotic expressions for the tail probabilities with the remainder’s
error rate of o(1). In this paper, we prove a strong large deviations theorem
for the ratio of independent random variables with an improved error rate
O(n™'). Chaganty and Sethuraman’s (1987) and Choi, Kim, Kim and Jeon’s
(1992) results were proved by using the Esscher transformation method. How-
ever, we use directly the inversion formula for the tail probability and apply
the Chaganty-Sethuraman’s (1985) approach as in the proof of large devia-
tions local limit theorems. This is the key point by which we could obtain an

improved error rate of O(n~1).

2. MAIN THEOREM

Let {U,,,n1 > 1} be a sequence of random variables with absolutely con-

tinuous distribution function F,, and {S,, > 0,n, > 1} be a sequence of
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random variables with distribution function F,,. Suppose that the two se-
quences are independent and n, < ny. Define ¢, (z) = E{exp(zU,,)} and

bn,(2) = E{exp(zS,,)} for a complex number z. Assume that
én,(z) is analyticin §); = {Z € C :|Real z| < a;,a; > O}, 1 =1,2.
Define

1
Pni(z) = — log ¢ni(z) for zeQy, 1=1,2 (2.1)

Denote the interval (—b;, b;) by J;, ¢ = 1,2 where 0 < b; < a;. And let {ry n,,
ny > 1, ny > 1} be a double array of real numbers such that sup |Pryme| =

r1 < oc and

Gy nmp(tyr,7) = [nl{d)nl(T) — Pn, (T + Zt)}

L
+ 12 {tn, (—77) = tn, (=1 (7 + 1)) }], (2:2)

for 7 € Jy,rr € Jy

Denote 7, n, by 7, and 7,, », by 7, and consider the following conditions for

U,, and S,,;
(A) There exist 3; > 0, ¢ = 1,2 such that
|, (2)] < B; for|z| < a;, ny >1,1=1,2.

(B) There exists 7, € J; such that r,7, € J,

Yy, (7o) = Tatbp, (=7aTn) =0 for allng > 1,n; > 1.
(C) There exists oy > 0 such that ¢, (1) > ey for 7 € Jy.
(D) There exists n > 0 such that for each 0 < é <7,

inf Real G, (t) = min{Real G, (6), Real Go(=9)},

for ny > 1,ny > 1, where G,(t) = Gpyn, (8 Tny ).
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(E) There exists M > 0 such that

by (2)

———————| < M, for arbitrary z € Q,,n, > 1.
1/1,:12 ( —TnTn )

(F) There exist [ > 0 and p > 0 such that

/

X

l/TLQ

ny (7 + it) o

¢nl (T)

Yy {—r(7 +11)}
by, (=77)

Pry {—7(7 +it) }
¢TL2 (_TT)

‘dt =0(nt), forte€J; andrre J,.

Theorem 2.1. Assume that the conditions (A), (C) through (F) and the
following condition (B’) are satisfied.

(B’) There exists 7,, € J; such that r,7, € J5, inf, 7, = 79 > 0

17/)1,11 (Tn) - Tn"/);,z(—rnTn) =0 for all n Z ].,712 2 1.

Then as n; and n; — 400 with ny/ny — ¢ > 0, the tail probability of

R, n, = U, /Sy, is given by

Hnl ,nz(r’n) et eXp{nll/)n: (Tn) + 7l2’d)n2(_rn7.n)}
Tn\/27r{n11/)nl(7'n) + nQT%'l/);; (—TnTn)}

x {1+ 0(n"}. (2.3)

We will state the next Lemma 2.2 through Lemma 2.4 before proving the

above theorem whose proofs were given in Cho (1991).

Lemma 2.2.  Assume that the conditions (A), (B), (C) and (D) are
satisfied. Let ro = inf, |r,| and choose a; > 0 such that (ny/n2)oq — riay =

€, > 0. Then there exists 6’ < 5 such that for 0 < § < &',

2

é
] 1GE > €, — . > > ] 2.
I1t|r12f5 Real G, (t) > €, T for all ng > 1,n, > 1, (2.4)
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where G, (1) = Gy ny (6570, Tn)-
Lemma 2.3. Let

, AL
Ky, = /2 (—2?) /ItKn;A exp{—na2G,(t)}dt. (2.5)

Then Ky, =1+ O(nl_l).
Lemma 2.4. Assume that the condition (A) is satisfied. Then the fol-

lowing identity

4100 T4i00 ,
[ bn@)dmra)dz = [ bn(2)dh, (—r2)d (2.6)

—10Q0 —100

holds, where 7 € J; and r7 € J,.

Proof of Theorem 2.1. Let H,, ,, be the distribution function of
Rnlynz = Unl/SnQ, then

Hoonar) = [ P ()P (v). (27)

Thus, the p.d.f. hy, n, of Hy, », 1s given by

+o0
s (1) = [ 9 (1) AP (), (2.8)

where f,, is the p.d.f. of U,,. The ch.f. Ay, n, of R, s, is given by

. +oo , +o0 it

hoa(t) = [ exp(=itr) hama(r)dr = [T 6, ) dFuy). (29)
By using Fourier inversion formula, the p.d.f. h,, n, is given by

1 +00 n

By mp(r) = / exp(—utr)hn, n, (1)dt

27 J oo

— 1 oo —itr oo E i_
abrd A (y) AFu(y)}dt (put — =)
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+o0

= i ¢n1 (ZS){/OOO e"isyr - den2 (y)}ds

27T —00

= ! /+oo On, (1)@, (—irt)dt  (put it = 2)

2 o
1 100 ,
= 5 [ bul2)dl, ()i

T4100
= [ @ (—ra)ds, 7€y (by Lemma 24)

271 Jr—ico
= ;—; /_:o exp [n1¢n1 (4 1t) + n21/)n2{—r(7' + zt)}]

x 4l {=r(r + it) pdt (2.10)

Therefore, the tail probability of R,, ,, is given by
— Ty +o00 +00 ) ]
H, n,(r)= 5;~/7' /_oo exp [nldjm(r +1it) + nzd)m{—-r(r + zt)}]

x ol {~r(r +it) }dtdr (2.11)

- [ ot 0) gt ot

Since explnytha {~r(r + i)}] = dur{—r(r + i)} = [ exp{=r(r + it)e}
xdFy,(z) converges to zero as r — 400 and 7 > 0, the relation (2.11) becomes

_ 1 e . . dt
Hnl,ng (T) = g /_oo exp [nlwnl (T + Zt) + n2¢n2{—'r(7' + ’Lf)}] T (212)
Substituting r by r, and 7 by 7, in (2.12), we have
_ 1 [+ , ) dt
Hy ony(rn) = oy /_OO exp [nﬂ/}nl(rn +it) + n;;sznz{—rn(Tn + zt)}] p——
exp{nld"ﬂ] (Tn) + n2'¢)n2(_rn7_n)} } « j’ (2 1;)

- Tn\/Qﬂ'{Tlﬁ/)'n’l(Tn) + nar2Yl (—r,7,)

where

I= \/772(%)%/:)0 exp{—nan(t)} Tn dt (2.14)

Tn + 1t
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and d, = (ny/na)y (Ta) + rid)zz(—rnTn),~Gn(t) = Gy np(t; 70, ™), for Tn €
J1, 7T € Jy. It is sufficient to show that I i1s 1+ O(n7'). We can write [ as

follows;

I =i (;_;) E /Itlzn;A eXp{_mG"(t)} i

Tn + 1t
+ v il %/ X { n,G (t)} T gt
ny | — expy —n2Ghn ,
“\or [t]<ny P 2 Tn + 2t
. . 1 1
=hL+1 (say), where 3 < A< 5 (2.15)

First, we will show that I goes to zero exponentially. And next, we will show
that I, is 1 + O(n7!). By Lemma 2.2, we can choose N such that for n, > N,

—2x
g

inf Real G,(t) > €,

lt|>n;> 4

For ny > N,

L] < \/”—2((21_;) /|t|zn;*

L
2

[T

exp{—naGa(t)}| dt

< v (52) sup |expl=(n = 0G0}

lel2n;
b, (0|7 s L=l + i)}
S Sral—raTs) t

1

= O(n§+p)exp{—(nz —1) inf Real Gn(t)}

lt2n;
iy ny?
< O(n} )exp{—(m — l)en 1 }
— O(ni*? ny
= O(n}] )exp{—enT}, (2.16)
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which goes to zero exponentially fast, since % <AL % Next, we can express

I, as follows;

. d,\?
I, =/n; (57?) /|t|<n;" exp{—nan(t)}Tn n itdt

T + 1t

= K1, + Ky, (say). (2.17)

The fact that ]{’ln = K;,1s 1+ O(nl_l) is proved in Lemma 2.3. It is left us
to show that K,, is O(n7'). Now,

s/\/n2

e tis] |

,I;’2n| < <2d—:r) : /|-9|<712_)‘+% exp(~82—2dn){1 + 2z, + zn(s)}

IA

d,\? @ ) s
<§> /I _H%exp(—g n){1+zn+L"(S)}\/n_27'0 s

s|<n,

IA

1
d, \? s2 s>
_" ___dn 1 . m o
(%) J ey exp(=Fa) 1+ it v ()
r3s3

61/71,2

+ nng{—rn ('rn +7

+1

?/)Z;(—TnTn) + anl (Tn + Z\/"sn_)
2

S

AVALDXIN

S

ds
Vs

)} + 1,09

: (2.18)

where

L,(s) =exp(z,) — 2, — 1
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and \ s 3
o n1s s

e _26712\/52 6+/12

+n Ry (Tn + 2755—2—) + n2R2{—rn (Tn +

Yoy () £ Yy ()

s
=)

The r.ls. of (2.18) can be written as the sum of six integrals. The first integral

equals zero and the second and the third integrals are O(n3').

Since

2

‘(;7) | /u% exp (= dn) [aBa (7 + W—)

2

S

NS

)} + La(s)]ds (2.19)

+ nRz{-—rn (Tn + 12

2

d . |
L

\/Sﬁ;)} + in(s)]

is O(n7!) (Cho (1991) ), we obtain

+ nng{—rn (Tn + 1

d, 2 52 .S
<%> /|s|<n"‘+% exp (—E'dn) [anl(Tn + \/_%)
S
V7
< O(n7*™). (2.20)

no
< 2
To

)} + La(s)) ds

+ ngRg{-rn (Tn +1

So the proof is completed.

3. SOME REMARKS

Remark 3.1. If n; > n,, we can obtain a similar strong large deviation

result of Theorem 3.1°.
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Theorem 2.1.  Assume that the conditions (A), (B), (C), (D) and (E)
in Theorem 2.1 and the following condition (F’) hold.
(F’) There exist [ > 0 and p > 0 such that

/ Bua(—r(7 + 1)) '/
g (—77)
X

I/TL1

Gy (T + 0t)
Gy (T)

Py (—1(7 +14t))
Y, (—7T)
Then the tail probability of R, ., = U,,/S,, is given by

'dt =0(nY), forre.J; andrr e J,.

] ( . ) — exp{nl¢n1(Tn) + n'Zd}nz(—rnTn)}
2 (i () a2 (—rara))

x {1+ 0(n;")}. (3.1)

Remark 3.2. In Theorem 2.1, if n; = ny, = n, then as n — 0o, the tail

probability of R, = U, /S, is given by

A.(r) = exp[n{tn, (Tn) + VYn, (=7270)}]
(ra) 7'"\/27rn{1f#1’1 (Tn) + r2gn (—=rath)}

x{1+0(n™"}. (3.2)

Remark 3.3. In Theorem 2.1, if n; = ny, = n and S, = n, then as

n — 0o, the tail probability of R, = U, /n is given by

Fn(mn) — exp[n{’l/}n(Tn) — Tn'ITLn}] % {1 4+ O(n_l)}. (33)

Toy/ 20! (1,,)

Remark 3.4. In Theorem 2.1, ifny =ny =n,S, =n and U, = 1 Xi,
where Xi’s are i.i.d. random variables with ¢(z) = E{exp(zX,)}, then as

n — oo, the tail probability of R, = X is given by
exp[n{¥ () — T2, }]

s x {1+ 0™}, (3.4)

F'n(a:n) =
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where ¥(z) = logg(z) and 9¥'(7,) = zn.

(1)

(2)

(3)

(4)

(5)

( 6)

(7)

(8)

(9)
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