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A Comparison of Distribution-free Two-sample
Procedures Based on Placements or Ranks
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ABSTRACT

We discussed a comparison of distribution-free two-sample proce-
dures based on placements or ranks. Iterative asymptotic distribu-
tion of both two-sample procedures is studied and small sample Monte
Carlo simulation results are presented. Also, we proposed the Hodges-
Lehmann type location estimator based on linear placement statistics.

KEYWORDS: Distribution-free test, Linear rank statistic, Linear place-
ment statistic, Hodges-Lehmann location estimator

1. INTRODUCTION

One of the most commonly encountered statistical problems is that of de-
termining whether two independent random samples arise from a common
underlying distribution. Test procedures for the two-sample setting that are
valid when no assumptions except continuity are placed on the forms of the
underlying distributions are referred to as nonparametric or distribution-free
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procedures.

Many such methods are based on the relative ranks of the sample obser-
vations from one population among the combined set of sample observations
from both populations. One particular collection of these rank tests is asso-
ciated with the class of linear rank statistics (see, for example, Chapter 8 of
Randles and Wolfe (1979)). This class includes the Wilcoxon (1945) rank sum
test and the Mood (1950) median test.

A second method for constructing distribution-free tests in this setting uti-
lizes the placements of the sample observations from one population among the
sample items of the other population. The class of linear placement tests in-
troduced by Orban and Wolfe (1982) is one such collection of placement tests.
They showed that the classes of linear rank tests and linear placement tests are
almost mutually exclusive, as the Mann-Whitney (1947) and Wilcoxon (1945)
statistics lead to the only test procedure with an equivalent form in each of
the classes.

In this paper we compare the asymptotic behavior of the classes of linear
rank statistics and linear placement statistics as one of the sample sizes goes
to infinity. A Monte Carlo simulation study of small sample power in a variety
of setting is performed for some of these procedures. Finally, we investigate
the Hodges-Lehmann location parameter estimators associated with the class
of linear placement statistics. '

2. A REVIEW

Let X;, X3, -+, X,, and Y},Y5,- -+, Y, beindependent random samples from
populations with distribution functions F(z) and G(y), respectively. Let
Ry, Ry, -+, R, be the ranks of Y1,Y2,---,Y,, respectively, among the com-
bined set of N = m + n sample observations from both populations. The class
of two-sample linear rank statistics corresponds to statistics of the form

SR = Xn: an(R;), (2.1)

i=1
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where an(1),an(2),---,an(N) is a set of N constants that are not all the same.
These constants are called the scores.

Many statisticians have contributed to the literature on two-sample linear
rank statistics. Wilcoxon (1945) suggested the rank sum test and the statis-
tic for a two-sample linear rank median test is attributed to Mood (1950) and
Westenberg (1948). The use of expected value normal scores in the two-sample
problem was first proposed by Fisher and Yates (1938) and later studies by
Terry (1952). The quantile normal scores were developed by van der Waerden
(1952). Linear rank tests for scale have been proposed by Mood (1954), Ansari
and Bradley (1960), and Klotz (1962), among others.

Numerous theorems can be used to establish the asymptotic normality of a
properly standardized linear rank statistic under both the null and appropri-
ate alternative hypotheses. Chernoff and Savage (1958) established the classic
limit theorem, as min(m,n) — oo, of linear rank statistics. Further refine-
ments on the conditions of that theorem were developed by Govindarajulu,
Le Cam and Raghavachari (1966). Hajek (1968) proved limiting normality
when the square intergrable score function in continuous subject to mild regu-
larity conditions on the underlying distributions. Similar results with weaker
restrictions on the score function and different conditions on the underlying
distributions were obtained Pyke and Shorak (1968) and Dupac and Hajek
(1969).

For the more recently developed class of linear placement statistics, let

U,,U,,---,U, be the random variables defined by
mU; = [numberof X's <Y;], (2.2)

t=1,2,---,n. We refer to U; as the placement of Y; among the X’s. The class
of two-sample linear placement statistics then consists of the form

Sr}:,m - Z (Pm(Ui)a (23)
i=1
where ¢,,(z) is any real-valued function defined on [0,1].

The exact distribution of the placements U = (Uy, Uy, - - - ,U,) and the first
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two null (¥ = G) moments of a general linear placement statistic were studied
by Orban and Wolfe (1982). Also, they investigated the asymptotic distribu-
tion of a linear placement statistic as the single sample size m goes to infinity.
They required the following two assumptions on the scoring function Ym(z) in
order to insure convergence, as m — oo, of the associated statistic.

Assumption 1 Let () be a real-valued function on [0,1], with at
most a finite number of discontinuities. Let ¥ = {d;,d,- - , } be the discon-
tinuity set of ().

Assumption 2 {¢m(z)} is a sequence of real-valued functions on [0,1]
that converges uniformly in = to ¢(z) on every closed interval [a, b C [0,1]-W.

Lemma 1. (Orban and Wolfe(1982)) Let [a,b] C [0,1] — ¥ and 0 < § <
(b—a)/2 be given. If p(z) and {p,,(z)} satisfy Assumptions 1 and 2, then for
each ¢ > 0,

Pl em[Fn(y)] — o[F(y)]| < e} — 1
as m — oo, uniformly for y € {y|a+ 6 < F(y) < b - §}.

A third assumption insures that the uniform convergence of ¢,, [Fr(y)] —
@[F(y)] to zero occurs on an sufficiently large subset of the support for the
distribution of Y.

Assumption 3 The distribution functions F(z) and G(y) satisfy

dG(y) =0,
~/F (v)ev 2
where V¥ is the discontinuity set for ().

Theorem 1. (Orban and Wolfe(1982)) Let SE .. be a sequence of linear

placement statistics with scoring functions {(,(z)} satisfying Assumptions 1

and 2. If F(z) and G(y) satisfy Assumption 3, then

SP -SSP 50 in robability, as m — oo,
n,m n p Yy
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where ST =Y ¢[F(Y))] and o(z) = Jim o, (). Moreover,
=1
lim P[S7, <z]=P[S; <z
Fligner and Policello (1981) introduced robust rank tests using placement of
Y; among the X’s and placement of X; among the Y’s for dealing with the
standard Behrens-Fisher problem.

3. ONE-SAMPLE LIMIT AND ITERATIVE
ASYMPTOTIC DISTRIBUTION

In this section the one-sample asymptotic (m — oo) distribution of a lin-
ear rank statistic S, is established under certain restrictions on the scoring
function an(z). A large-sample approximation to the exact null distribution
of Sﬁm is drived. Also, we compare the one-sample limiting distributions of

analogous linear rank and linear placement statistics. For this purpose, we
require assumption for the linear rank scoring function ay(z).

Assumption 4 an(i) =by ¢ (1 /(N + 1)) + dn, where dy and by are
constants for every N and ¢(z) is any real-valued function on [0,1].

Under Assumption 4, the linear rank test procedure associated with S,’:m
is equivalent to the test based on the statistic

- R;
S = — 3.1
Theorem 2. Let [SPr]%_, be a sequence of test statistics of the form
(3.1) with scoring function ¢(z) satisfying Assumption 1 and Assumption 2.
If F(z) and G(z) satisfy Assumption 3, then
Sﬁ; — S 0 in probability

as m — oo, where S =" ¢[F(Y;)]. Moreover,

i=1
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lim P[Sh <z]=P[SP <z
Theorem 2 is direct application results from Theorem 1 and tells us that
the test procedure based on the test statistic SEx (3.1) with ¢(z) = () is
asymptotically (m — oo) equivalent to the analogous linear placement test
procedure based on SP (2.3). Therefore, a linear placement test procedure
and its linear rank analogue (with the same scoring function) are equivalent
in the sense of their one-sample limiting (m — co) distribution.

n
Our next concern is the asymptotic distribution of SP = Z o[F(Y:)] as a

sequence in n. Since Y;,Y,,---,Y, are mutually mdependent and 1dent1cally
distributed, then so are ¢[F(Y; )] ¢ =1,2,---,n. Applying the Central Limit
Theorem, we see that asymptotic (n — oo) d1str1but10n of the standardized
S? is standard normal distribution ; that is,

S—’I’J;@ n in distribution
\/n_‘/: (0,1) distribut (3.2)
as n — 00, where
E(e[F(¥)] = [@[F)]dG() (3.3)
and  V, = Var(p [F(Y))] = /[go ?°dG(y) | (3.4)

Definition 1. Let {T, ,} be a sequence of statistics depending on m and
n, and let F, ,.(z) be the cumulative distribution function for T m. We say
that T, m has an iternative asymptotic distribution with cumulatlve dlstrlbu-
tion function F(z) if lim lim F, . (z) at all points of continuity of F(z).

n—oo m-

From Theorem 1 and Theorem 2, we have that if ¢(z) = ¢(z) then

SR" ¢ S _np

n

— 0 in probability
\/T \/_

ng —ncp

— 0 in probability
<p V

and
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Sk, —no

as m — oo. These facts, in conjunction with (3.2), imply that Wa and
nVe

SP  -np . . . . . . .

—"'—'"—‘;i have the same asymptotic standard normal distribution with iterative
nVe

sence that m — oo and then n — oo. This common asymptotic distribution

can be used to obtain an approximate expression for the power function of a

given linear rank or linear placement statistic as a guideline if m is sufficiently

larger than n.

Example 1. For the two-sample location problem, define G(z) = F(z~0)
and assume that ¢(z) is a nondecreasing function in z. For testing Ho : 6 = 0
versus H, : 8 > 0, we would reject H, for large values of either the linear rank
or linear placement statistic, SY (or SH+ ), associated with o(z), and the
iterative asymptotic upper 100a-th critical value for either of the associated
hypothesis tests is S, = n@g + Zoy/nV,,. Where Z, is the upper 100a-th
percentile of the standard normal distribution and g and V,,, are given by
equations (3.3) and (3.4) under Hy : § = 0. Since V,, is approximately equal
to the variance of ¢(F(Y;)) under an arbitrary alternative hypothesis, the ap-

proximate power function, 3, for either of these tests 1s

B(8) = P(S,ﬁm(orSf’:n) > Sy 1 Hy is true)

ngg + Loy /nV,, — npg
~P(Z > 28 AN
n Ve,
VN (%o — 5)

\/7% )7

where ® is the distribution function of the standard normal distribution. Now,
if (pF)(t) = dp[F(y)]/dt exists and is continuous for every real number ¢,
then

=1-0(Z. +

Vn (@ —@s) _
Vo VI(@(F(y)) — #5)2d F(y)
VRl o(F(y))dF(y) = [ o(F(y + 6))d F(y)]
VI((F(y)) — 20)%d F(y)

%s)  Vnlfe(F(y)dF(y) — [ o(F(y))d F(y — 6)]
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~ *9\/77[f(<PF)'(y)dF(y)]’
VI(@(F(y)) — 75)2d F(y)

where this final step follows from a first order Taylor series expansion. There-
fore, the approximate iterative asymptotic power for both test procedures in
this setting is

—0vnlJ(oF) (y)d F(y)] ]
VI(e(F(y)) ~Fo)*d F(y)

which clearly depends on the level a, the alternative value of the location pa-
rameter 0, the scoring function ¢, and the underlying distribution F.

B(6) =~ 1—®[z, —

Now, in order to compare the empirical powers for general alternatives, we
conducted a Monte Carlo simulation study. In this investigation we considered
only the normal score function N and the exponential score function E. Re-
member that the linear placement and linear rank procedures are equivalent
for the identity score function.

For our Monte Carlo study, we used five different sample size configura-
tions, (m,n) = (10,5),(15,5),(8,8),(5,10), and (5,15), and alternative p* =
0.5, 0.6, 0.7, 0.8, 0.9, where p* = 1 — F(—#0), along with significance level
a = 0.05.

For each of the parameter settings studied, the International Mathematical
and Statistical Libraries (IMSL) routines RNNOR, RNEXP and RNCHY were
employed to generate random samples from normal, exponential and Cauchy
distributions, respectively. For the double exponential distribution, the prob-
ability integral transformation and the routine RNUN were used to generate
the sample data.

In each case, we used 10,000 replications in obtaining the various power
estimates and relative power estimates (RPE), where

RPE = simulated power estimate for placement procedure
~ simulated power estimate for analogous rank procedure

These simulated relative power estimates for the members of the two classes
considered in this section are presented in Table 1. The designated alternatives
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configurations correspond to values of p*.

Table 1. Power comparisons of analogous two-sample linear rank and linear

placement tests for normal scores(N) and exponential scores(E).

The table entries are RPE values.

*=0.5

*=0.6

0

*=0.8

0

m

n

N E

P
N E

Pt =
N

N
E

14
N

E

p' =
N

9
E

Normal

Distribution

10
15
8
)
)

3
)
8
10
15

1.02 1.02
0.98 0.95
0.99 0.95
0.96 0.97
097 1.02

1.03
1.00
0.96
0.97
1.00

1.02
0.96
0.95
0.97
1.00

1.02
0.99
0.98
0.97
0.99

1.01
0.98
0.97
0.99
1.00

1.01
1.00
0.99
0.98
0.98

1.01
0.99
0.98
0.99
1.00

1.00
1.00
1.00
0.99
1.00

1.00
1.00
1.00
1.00
1.00

Exponential Distribution

10
15
8
)
)

3
)
8
10
15

1.03
0.97
0.94
0.98 0.97
0.99 1.04

1.04
0.96
0.92

0.99
0.96
0.91
0.89
0.86

1.00
0.94
0.94
0.98
0.98

0.97
0.96
0.91
0.89
0.86

1.02
0.98
1.00
1.01
0.99

0.98
0.98
0.95
0.94
091

1.03
1.02
1.06
1.05
1.02

1.00
1.00
0.99
0.98
0.98

1.02
1.03
1.09
1.05
1.03

Cauchy

Distribution

10
15
8
5
)

)
)
8
10
15

1.02 1.02
0.98 0.94
0.98 0.95
1.02 0.96
1.02 1.01

1.05
1.01
0.99
1.00
1.03

1.02
1.00
1.01
1.04
1.07

1.04
1.02
1.03
1.05
1.07

1.06
1.04
1.06
1.01
1.01

1.03
1.03
1.05
1.04
1.03

1.06
1.05
1.10
1.02
1.01

1.02
1.02
1.04
1.03
1.00

1.04
1.02
1.14
1.02
1.01

Double E

xponential Distribution

10
15
8
5
)

)
)
8
10
15

1.04
0.99
0.97
0.97
1.02

1.04
0.97
0.95
0.97
1.02

1.04
0.99
0.98
1.00
1.05

1.04
0.98
0.98
0.99
1.02

1.03
1.01
1.00
1.01
1.03

1.03
1.01
1.00
0.99
1.01

1.02
1.01
1.01
1.01
1.01

1.03
1.02
1.03
1.00
1.00

1.01
1.01
1.01
1.00
0.99

1.02
1.01
1.03
1.01
1.01

The simulation results suggest several conclusions.
members of the two classes of distribution-free two-sample procedures are gen-
erally equivalent for all studied configurations and underlying distributions.
However, we did find some trends in this investigation. If the parameter 6

The corresponding
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goes far from 0, the RPE values tend to be the largest. Also, for sample sizes
(m,n) = (15,5),(8,8), and (10,5), the distribution-free two-sample procedure
based on placements are better, while the reverse is true for other sample size
configurations. Therefore it appears that the placement test is better than the
analogous rank test if m is large relative to n. Finally, the placement test ap-
pears to be better than the rank test under the Cauchy and double exponential
distributions, indicating that a distribution-free two-sample procedure based
on placements is a viable alternative to the analogous linear rank procedure
for heavy-tailed, symmetric underlying distributions.

4. HODGES-LEHMANN LOCATION ESTIMATORS
BASED ON PLACEMENTS

In this section we consider a procedure for obtaining a point estimator
for the location parameter from a linear placement statistic. This important
technique was first proposed by Hodges and Lehmann (1963) for rank tests in
the one-sample location setting and then extended to the two-sample location
problem. Our estimators correspond to direct application of their technique
to two-sample linear placement statistics.

Let X, X3,-++, X and ¥1,Y5, - -, ¥, be independent random samples from
continuous distributions with cumulative distribution functions F(z) and F(z—
0), respectively. Let S(Xy,X,,---,X,n; Y1,Ys,---,Y,) be a linear placement
statistic with a nondecreasing scoring function ¢,,(x) for testing Hy;6 = 0
versus H; : 8 > 0 ; that is,

S(XI’X2a"' aXm; )/171/:.’7' ",Yn) = Zﬁom(Ui)a
where U; is defined in (2.2),7 =1,2,---,n.

In order to develop the Hodges-Lehmann location estimator associated with
S(X1, X2+, Xm; Y1,Y2,--+,Y,), we need to verify the following three con-
ditions on the linear placement statistic.

Al Hp : 0 = 0is rejected for large value of S(X;, X5, -+, X ; Y1,Ys, - ,Yn)
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A2 S(zy,29, - Tm; y1 + By -+, yn + h) is nondecreasing function of h for
each S(z1, ,Zm; Y1," "1 Yn)

A3 When 6 = 0, the distribution of S(X;,X,, -+, Xnm; Y1,Ya,--+,Y,) is

symmetric about some value ¢ for every continuous F(z).

Conditions Al and A2 follow from the facts thst ¢,, is a nondecreasing func-
tion and that U; based on y; is no greater than the same U; based on y; + h,7 =
1,2,---,n,and h > 0.

Theorem 3. If the scoring function ¢, (z) satisfies @, (1 —2) = £ —pm(z)
for some constant £* and for all z € [0,1], then the linear placement statistic
S(X1, X2,y Xm; Y1,Y2,- -, Y,) satisfies Condition A3.

Proof. If Hy : 6 = 0 is true, we see from Orban and Wolfe (1982) that

m
m' Htj!
7=0

PolmU = (r,rey - 1) | = ———
o (1,72 )] (m+n)’
for any vector r containing t; values of j, 7 = 0,1,---,m, with 0 < ¢; < n
and th = n ; the null probability is 0, otherwise. Let ' = (m —ry,m —
—

re,-++,m — ry,). If r contains t; values of j, then =’ contains t; values of

m
m—73,7=1,2,---,mwith 0 <{; <n and th = n. This implies that
i=0

Po(mU =7') = Po(mU =), (4.1)
for any vector . Also we know that m U = ' if and only if m U’ = r, where
U= (U,U---,U,) and U' = (1 — Uy, 1 = Uy,---,1 = U,). It then follows
from (8) that

Po(mU =7r) = PBb(mU' =r),

for any vector r. Therefore,
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(UI’U2,"'7U)g(]-_Ul,l_UZa "71_Un)1

where £ stands for equal in distribution. From the fact that ¢,, is a measur-
able function, we see from Theorem 1.3.7 in Randles and Wolfe (1979) that

Z‘Pm Zcpm 1-0,

Using the condition that ¢, (1 — z) = ¢* — ¢,,(z), we obtain

S(X17X27"'7Xm; Y17Y'2""’1/'n)=
é*n—S(XlaX%""Xm; Yi3}/2>"',)/;t)-

Thus, the null distribution of S(X1, X3,-++, Xm; Y3,Y2,--+,Y,) is symmetric
about 6 = £ and Condition A3 is satisfied.

The linear placement test statistic thus satisfies all three conditions, and
the associated Hodges-Lehmann estimator of 8 is given by

n 0*_*_0**
0 =
2 y

where 0 = sup{0 : 5(X1,X3,---, X,,; Y1 —0,---,Y, —0) > £} and
0 = inf{0: S(Xy, Xpr - Xom: Vi 0,Ys = 0, s — 0) < £}

(4.2)

Example 2. Let o, (z) = z. Then S(X;, X3, , Xpm; Y1,Ys,--+,Y,) =

ZU is proportional to the number of positive D’s, where Dyy € Dy <

=1
* £ D(mn) are the ordered values of the differences Y- X, i=1,2,---,m

and J=12,---,n. It follows that S(X;, X5, -+, X\ ; Y1 — 6,---,Y, — 0) is
proportional to the number of D’s greater than #. With arguments similar to
those in Example 7.1.8 in Randles and Wolfe (1979), it follows, as expected,
that the resulting Hodges-Lehmann estimator for 8 is

ézmedian[Yj—Xi r1=1,2,---;m and j=1,2,--- n].

Example 3. Let ¢on(z) = 1 if 2 > 1/2;0 otherwise. Then

n

S(X1, X2, X 11, Yo, 1) = Zc,pm(U,-) is equal to the number of Y’s
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greater than median{X;, Xz, -+, Xn}.

Thus S(X1, X2, "+, Xm; Y1 —0,---,Y, — 0) is equal to the number of D*'s
greater than 6, where D} =Y, — median{ Xy, Xs,--+, Xn},7 = 1,2,--,n.
The associated Hodges-Lehmann estimator for 8 is

0= median [D}; j =1,2,---,n]
= median{Y, Y2, -+, Y, } — median{X;, X3, -+, X;n }

using similar arguments to those in Example 2. On the other hand, the Hodges-
Lehmann estimator for # based on the corresponding linear rank statistic with
the same scoring function is

6* = median {X1,X,, -+, X }—median { Xy, X2, -, Xm; Y1, Y2, -+, Yo }

Therefore, as expected, the Hodges-Lehmann location estimator based on a
linear placement statistic is not always equal to the one based on the analo-
gous linear rank statistic.

We now turn our attention briefly to the exact distributional properties
for Hodges-Lehmann estimators based on linear placement statistics. Using
arguments similar to those of Lehmann 7.2.18., Theorem 7.2.21 and Corollary
7.2.31 in Randles and Wolfe (1979), a linear placement Hodges-Lehmann esti-
mator has the following results.

Theorem 4. Let é(Xl,Xg,"‘,Xm;YI,YQ,"‘,Yn) be the Hodges-
Lehmann estimator (4.2) associated with a test statistic S(Xy, X2, -+, X ;
Y:,Ys,- -, Y,) with a nondecreasing scoring function ¢, () satisfying o, (1 —
z) = & — pm(z) for all z. Then 9 is a shift statistic that is, it satis-

ﬁeS 0($1’-.-,xm;yi—+—k’-..,yn+k) = o(ml’...,mm;yl’...’yn)+k for all
(xla"'>xm; yla"’,yn) and k.

Theorem 5. Let é(Xl,Xg, o, X Y1,Y,,---,Y,) be as in Theorem 4. If
F(z) corresponds to a distribution that is symmetric about some value 7, then
(X1, X2,y Xmm; Y1, Y2, -+, Y,) is symmetrically distributed about 6.
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Theorem 6. For the setting of Theorem 4, if
PO(S(XI,XZ,'”’Xm; )/17}/2,"‘,}/71) 26) “—‘0,

where § = £*n/2 then é(Xl,Xg,"',Xm; Y1,Ys,---,Y,) is median unbiased
for 6.
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