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A Common Mean Estimation Problem
of P-Normal Populations D

Seung-soo Lee, Kwan-young Kim?

Abstract

This paper deals with the estimation problems of a common mean of several
independent normal populations with unknown variances, based on random samples of
equal size. The authors suggest a promising approach and a new estimator to
improve Graybill-Deal estimator further. By Monte Carlo simulation study, the

efficiency of new estimator is compared with that of Graybill-Deal estimator.

1. Introduction

Let X, + + +,Xiv be independent random samples from a normal distribution with a
common mean # and unknown variance 01'2, i=1,+ « - P, respectively. If each 0;% is

known, the best (minimum variance unbiased) estimator of common mean I is

. P P
0= ( X X0:"/ (X 1/0:%),
i= i=
_ N
where X;=( Z;XU)/N. In the case of unknown variances, Graybill and Deal(1959)
=
suggested

P ___ P
fg=( ZX,-/sﬁ)/(i;le/s,-z),

=

N —
as an estimator of I, where S;%= Z;(Xu X2 They proved that Hg dominate X; in

variance for P=2, if N>10.
For the further references, see Zacks(1966), Mehta and Gurland(1969), Cohen and
Sackrowitz(1974), Bhattacharya(1978), Sinha and Mouqadem(1982), and etc.

For P22, Norwood and Hinkelmann(1977) gave a necessary and sufficient condition that

¢ dominate X;, i=1, - - - P. There are only a few papers for P22. Confer Brown and
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Cohen(1974), Shinozaki(1978) and Rao(1980).
In this paper, we suggest a class of estimators of common mean which can dominate

Graybill-Deal’s estimator in efficiency. We present a class of estimators of W which have
the form
Hnvew =(1-1) g+, (1.1)

- P__ ~ ~
where grand mean W= ;Xi/P and 0<A<1. Note that if A=0, then Uwnew = lUg and if

A=1, then Ww~ew =u. M plays a role of shrinkage variable between fig and U by a

degree of equality of variances.
The motivation for deriving the above estimator is closely related to the problem of Stein
in estimation of multidimensional parameters.
1 denotes the (P x1) column vector with each components 1 and V denotes the (P xP)

nonsingular positive definite matrix with the elements 012, o e ,0132 in its main diagonal
positions and zeros in all other locations. Transpose of a vector or matrix A is written by
AT The inverse matrix of a nonsingular positive definite matrix B is expressed B . (ay)
will denote the matrix with elements aj.

Let X;,j=1,+ « «,N be ild P- dimensional randon vector having multivariate normal

distribution with mean vector ul(where U is a scalar) and variance covariance matrix V.

V is diagonal , but now we consider a general V.

Our problem is the case when

When YV is known the best estimator of U is obtained by
1"=(1Tv ' X/(1v M)

N
where X=( Zl X;)/N , and when YV is unknown, we may have
=

Iw=(17S7"X/(17s™'D)
where S denotes the matrix of sum of squares and cross products of Xjs. We can rewrite

e as

le=(1"D'X)/(1"D D)

where D denotes the (P XP) diagonal matrix with elements Si 2, -« +.Sp? in its main

diagonal positions and zeros in all other locations. In Section 2, we will show that ﬁ*can be

expressed in the alternative form as

~ %

1=+ BT T,
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where = _l_Tz(/P and E is P-1 dimensional random vector and B is the regression
coefficient on Yz, 1y is also expressed as
ﬁM=-lI+_BZE
when B is estimated by the least squares method. When P-1 23 (ie. P >4), it was
shown by Baranchik(1973) that B can be improved quite analogously as the case of the mean
vector of the multivariate normal distribution by shrinking. That is, Ha is dominated by an
estimator of the form
lig= H+_E_TT E
In our case it is expected that Baranchik’s estimator can still be improved by making use

of the condition that V is diagonal, and again we get the estimation of the type (1.1).
More detailed discussion of the derivation is given in the next section.

In Section 3, we evaluate the variance of I ngw , Var( I yew). For P 22, in case of equal
variances, we prove that the efficiency of U yew is larger than that of {i¢ .
For P 23, it is very difficulty to evaluate Var( H ngw) analytically (e.g. Var( fig) has not

been evaluated exactly in literature.). Therefore in order to examine Var( i nzw), we carry

out Monte Carlo simulation and compare efficiencies of our estimator with that of
Graybill-Deal estimator.
Conclusions are summarized in Section 5.

2. Rationale for a new unbiased estimator

In this Section, we give a rationale for choice of new estimator I nygw. To begin with, we

consider the following transfomation. That is, we define

P
and
P
Yy= ZawXy, i=2,+ - +,P, j=1,+ + + N 22)

where



60 Seung-soo Lee, Kwan-young Kim

P
> aix=0
k=1
5
k=1aikaj"-1 , L=)
0, i#].
From (2.1) and (2.2) we also define
. XN .
Yi=2Yw/N=(1 TX)/P
=
and
N
2Yy|
Jj—vl Xg
Yo | AV | Vo|-aT
N Yr
2. YF
Jj=1

2, -, P 'and j=1,..., P. Then we define as follows

where AT=(ay) i

_ (Y1) (1TX/P) (17/P)_
XE _ = _ = ;X-
Y. ATX AT
Since
17/p 10
(1 A)= ]=l (P xP), (2.3)
AT 0
we get

. ~%
From the above we can rewrite H as follows

Defining (1 % (P-1)) vector
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~ %

P
we can write U =Y+ %BiY:‘, where _B_T=(Bz, » » + Bp). Note that with unknown V, the

problem of estimating U is equivalent to that of B.

From now on, in order to estimate B, we'll consider the conditional distribution of Y71,

p P
given Y2=(Yz~Yp)? where Y= %X,/P and YiEk;aika, i=2,+ « « P A{aix)

equals in (2.2). Then the conditional distribution has mean
u-BTY,

and variance

0%y, = VywrY vV vw.V v, (2.4)
where B*=-V3.v.V yvr,, Vywr=(1"V1V/P), Vyy.=A"VA, Vyy=(ATV1)/P,

Vyvr=(1"VA)

|

Lemma 2.1. B =B" .

proof . We note that

17 a'vyp 17v'a
v i1/P A= (2.5)
AT (ATvayp ATv'a
From (2.3), the inverse matrix of (2.5) becomes
17 (1Tviyp 17va
V/P A)|= (2.6)
AT (ATv1y/p ATVA

By simple calculations of matrix, we get
(ATV1/P=—(ATVA ATV DAY /P,
Accordingly, since
ATV DAY DT =-(ATY ATATY /P,
we get
_ B=B". /]
From the conditional distribution of Y1 given Yz , it is easy to show that the maximum

liklihood estimators of U and B are, respectively,

ﬁM:?;’LBTE
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and

where S7Vy,=ATSA and S y,v,=( ATS1)/P. S denotes the matrix of sums of squares

and cross products

From (2.4), (2.5) and (2.6), by similar procedures, we get
o%y.= (17D 2.7

By the well-known property in regression analysis, given Yz, B has (P-1) dimensional

normal distribution with mean B and variance §-)}LY202Y1|X_2. Hence we obtain the following

lemma.
Lemma 2.2 . The quantity
p=Y1+ BTE
is an unbiased estimator of I and has the variance
Var( i) =(1TV D) 1+(P-1)/(N-P-1)VN.
Proof. Unbiasedness is directly obtained, since
E(lin) =Ev,E viy{ WmlY2)
=Ey,(u+B7Y9)=u .
For the variance, first we note that
Var( i) =Var( 7= 17+ Tim)
=Var( 8)+Var( ' - fiy) ,
because 1§ is the best. Accordingly
Var( i) =(17V 1) Y/N+Varl ( B- B) Yzl
=(1TVv ' D) YN+E(B-B)"V yw{ B-B)VN (2.8)

=(1TV D) YN+Ex, [tV y5, STw0 i) VN
where "tr” denotes the trace of matrix. Then using the property of Whishart distribution
and (2.7), we obtain that
Var( i) =(1TV 1D [1+(P-D/N-P-DYUN ./ //

Seeing the proof of lemma 2.2, we know that goodness of an estimator, #o , depends on
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(2.8), that is,
El( Bo-B) 'V yw( Bo-B)] (2.9)
Therefore, we can use (2.9) as the risk function in estimating B. In other words, the best

estimator of I is the one minimizing (2.9). Let’s consider the following estimator of B,

B'=[1-¢ °/( B"Syyw. BB

where
62 = 2Y1 §_ YszS-leYé Yo¥
- (lT-S-ll)—l
and

ce{ 0, 2AP-3)/(N-P+3) }.
Baranchik(1973) has proved that
El( B -B)Vyw( B -BI<E[(B-B) Vyx(B-B)],

if P24 and N 2P+1. Namely we can improve 1y by adopting

ip= Y1+ B 'TZ 2.
Considering the circumstances mentioned above, we have known that Ui is dominated by
1ip in variance. Here, if we employ independence property among populations it is natural to

expect improvements on iip. For that purposes we'll take up "Rao-Blackwellizing” on B’
[Bickel and Doksum(1977, 121p)]
By such a procedure in the proof of lemma 2.1, since we can rewrite B as follows
B=(1"s"DMATSTD,
we get
B ={1-cPY/{(1"SDUTS ' H-P*HB. (2.10)

As the variance covariance matrix V is the diagonal matrix, its sufficient statistic is D.

Hence, we'll define B™ as follows,
B*=E[B"IDI. (2.11)
In order to find B*, we rewrite the relevant statistics as follows,
17s1=1"D"”RD"1=a"Ra
and

lTS_llleD _I/Q_E_l_Q _I/ZIE_QTE_I_b_;

where R is a sample correlation matrix of X and D=D 12 D 2 and D '=D -i72 D "2,

Then substituting them in (2.10), we get
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B'=(1-cPY/{(a"R)BR'0)-PIIHGTR D) B TR '),
where GT=ATD ™
But since we can not calculate (2.11), exactly, we’'ll utilize an apprximation of B by

Taylor's expansions. First we divide K as follows
R=1+AR

where [ is the (P XP) identity matrix and AR is R-1. Using the Taylor's expansions,

we acquire

a)bT A’Rb)-(a"ARa)(bTARbB),

cP* /{(gT&ngﬂ"g)—P2}~x1{1—<g b)a"ARa)/K
+(a’a) b ARB)/K-(a"a)(b" A’Rb)/K+(aTARa)(b TARD)
+(b"b)a"ARa)¥/K*+(a"a)* (b TARB)Y/K*
-2(a”"a)b"b)(a"ARa)(b TARD )/K?,
where M=cP?/{(a"a)(a"b)-P?}, K=(a"a)b"b)-P*? and
(B"R'BYNGTR D)~ D) NG h-GTARB+GT.
{1+(6"B) (B TARL)- (b)) U b TARL)+(bTH) (b TARB)?),

’Rb)

where = denotes the near equal. In these approximate expressions we did not write the

error terms, because it is very tedious and complicated and we don’t need them. Using those
expressions, we can approximate B~ as follows
B~ (1-M)X2"0) MG b-G MR+ G A’RD

+(BTEY NG oY TARE)+(BTE)Y N GTARBL Y b TARD)

(GTh-GTARB+(bTB) NG h)bTARD)}
T ala) b A RbYK-M(aTARa) b TARD)/K

~

“M(b D) aTARG) YK - M(aTa) (b TARD)YY/K?

+20(aTa) b ) aTARa) (b TARD )/ K?).
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By taking the conditional expectation on the above equation, we'll obtain the approximate

variates of B™ as follows

B” ~(1-m{1'27' DA D202 DA R DA DD

+
o
—

bi
S
1
[y
~
P
[+
~
N
)
=
=
—
Li
-]
KR
—
S
{
—
&)
N
N
=
Syt
g
z
i
—
e

i
"]
=
—
N

)
[—y

S
Ir—Ta

|

—

hi

I

J—t

=

bi

1]

3

~
—

b\]
S
i

[
[N

h.]
IS

.

Jr—s

i
S

h.]
1

[\V)
—
-

+4(P*-P)X1"DIXATD'1)/K }/(N-DK .
In the above, if we ignore the terms of 1/(N-1) order, we have
B"~1-M)QA'D')MATD D), (2.12)

where

B"~1"p'1)MAa’D™1) (2.13)

Since AAT=1-117/P | we get
i=1"p7"'D'UDTX= T

That is, Graybill-Deal estimator use (2.13) as an estimator of B. For our convenience, we

define
A=cP/{(1"D DA TD D),

where 0 €c £1, as a shrinkage parameter. From this, we may construct a new estimator

of U,
bvew =(1-0QA'R7'DADXALTX/P, (2.14)

to achieve our purpose, improvements on flg. Note that we do not assume special
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conditions in (2.14), though Baranchik assumes P24 and N=P+1,
As another shrinkage parameter, we can choose

A =c(IS: H¥F /(X S:Y/P)?,

which is mimicked the test statistics for equality of several variances. Hence as an
estimator of H, we may suggest

e =(1-M)g+A" 1 .

3. Variance of new unbiased estimator

In this section, we investigate the unbiasedness and variance of new estimator.

Since S;%'s are distributed independently of the X;'s and the conditional expectation of
flg given S;%'s is 1, unbiasedness of W new is directly derived as follows
E{ll now} = Est-siE 75 -%51 5753 (1-M1g + Mt}

E s-se{ (1-Mu + hu}

= u
From (2.8),

Var(R xew) = Var(@)+ 2~ E(( B*-B"V v (B"- B} GD
The second term of (3.1) becomes
E{ {-0A"D' DA™ D' D-1TV DAY D)

ATvA{(-0ATD "D ™MA™D ' D-1TY ™AV D))

=E{ {a-»a’p 'O phH-ATvIn My ™Y

AATVAATHHA-VA ™D DY N D - ATV D) T Y TDY )

Since AAT=I-117/P, it becomes
E( {a-nA™p'D'ATp -y DTy ha /ey

Via-na™ ' H YD -ATv DTN YT AP )

Hence we obtain

Var(l vew) = ——E{(1 D '1)y*1"p'v D1}
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+

1 Ay L 1Tyl 1 Tp-1
~ E{200-M 5 (1TD DD VD

; (;Tt_m}

- AT D' H 1Dy D D) +

_ D Sy ) R N B PR o o
= Var(lo)+ 7 B{-5-1(1"2" D71 D'¥Y D

-P((LTD D 2Dy DT Dy A PARLTY D)

+(1"D7' DDy - 41T AR Y )} 63

We note that if the second term of (3.3) is a negative quantity, then 1 nvew dominates Hg
in variance. In case of equal variances, we can show that the second term of (3.3) is
negative. That is, when all 0;%s are 1,

E{:zufl{ 1-Pé SH/()EI SF)}

P

25-2 2 1

+)"P {P+PZ; Sl / in Si
=E{2P )\ - 20 + 1024 - PTA%)

7 )2—2P}}

=E{(AV-2)(A-P ™}

b

where A= FZ; Sl /(f 5‘1,-2 Y2, Since 0<A<1, and A2P7! the last equation becomes
negative. Hence new estimator dominates Graybill-Deal estimator when all variances are
equal.

For P=2 and N=3, some analytic results are obtained by Lee(1993). But for P>2 it is very
difficult to utilize the analytic techniques to evaluate (3.3) exactly. In the next section, we
introduce the simulation results about efficiency of new estimator and that of Graybill-Deal.

4. Monte Carlo simulation study

In this section, we carry out Monte Carlo simulation and investigate efficiency of new
estimator and Graybill-Deal estimator.
The computer programs used for simulation were written in Fortran 77 and were run on
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the CIBER962-31 computer at Kangwon National University. Uniform random numbers used
in these simulations were generated by using the IMSL.
For the sake of estimating variances of new estimator, (3.3) by Monte Carlo simulations,

from the facts that each S;%o iz, i=1, ... ,P, have chi~square distribution with (N-1) degrees

of freedom, we first generate chi-square variates and obtain random variates S;2. We

confirm our attention to odd sample numbers, Then chi-square variates with (N-1) degrees
of freedom are generated as like Y=-2Ln(lU)), using the (N-1)/2 uniform random variates

U;s. The same experiments were conducted 10,000 times. We define Var(lig) and
Var(l new) to be variances obtained by simulations. We define

eff(hg)=Var(L*)/ Var(iig)

e new)=Var(™)/ Var(i xew)

eff(ll new1)=Var(L*)/ Var(l newn) .

When P=4-12, we consider the several cases for population’s variances and show the
results for the comparisons of efficiencies in figure 1-10. In figures, NEW, NEW1 and
GRAYBILL denote the efficiency of their estimators. We took c=(N-2)/(N-1) in figures 1-6
and c=2/(N-1) in figures 7-14.

Figure 1. Comparison of efficiency when 0,-2=1, =1, 4.

m—
0.95 1 NEW 1
—_—
0.9 1 GRAYBILL
- —K—
0.85 NEW
> 0.8+
(&)
&S
& 0.757
ba
5 074
0.65
0.6 1
Q.55+

0.5
2

4 6 8 10 12 14 16 18 20 22
SAMPLE NO.
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Figure 2. Comparison of efficiency when Ui2=1, 1=1, -, 10.
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Figure 3. Comparison of efficiency when 0,'2=i, =1, - 4.
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Figure 4. Comparison of efficiency when 0:%=4, i=1, 6.
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Figure 5. Comparison of efficiency when 0:%=1, i=1,,3, 042="7.
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Figure 6. Comparison of efficiency when 01%=1, 02 221, 03 225, 04 %=5.
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Figure 7. Comparison of efficiency when 012=1, 05 %=8, 03°=8, 04°=8
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Figure 8. Comparison of efficiency when 0;'2:1, =1, -7, 08 %=10.

1
—
NEW 1
0.9 - .
GRAYBILL
0.8 ——
NEW
S 0.7 1
z
Ll
G
= 0.6
(Y]
0.5
0.4
0.3 . . . : . . : : .
2 4 8 8 10 12 14 16 18 20 22

SAMPLE NO.

Figure 9. Comparison of efficiency when 012=1, 0; 2=8, =2, -, 8
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Figure 10. Comparison of efficiency when
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From the results we can conclude that a class of new estimators presented in this paper
has better performance than Graybill-Deal estimator for all sample sizes except the case

when some of the 0;%'s are very small compared with the other. We note [ newa has

better performance than 1 nzw.

5. Conclusions

When P23, it is very difficult to treat new estimator analytically. From Monte-Carlo
simulation, although it may be pointed out that the gains in efficiency tends to decrease
when sample size increase, it also turns out that the efficiency of new estimator is better
than that of Graybill-Deal estimator when the variances of the population are almost the
same or when we have small sample size.
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