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On Characterizing Distributions by Some Properties of the
Distribution Truncated at the rth order Statistic

Sangun ParkD
Abstract

When we have an iid. sample of size n from a continuous distribution, the
distribution truncated on the left at the rth order statistic plays an important role in
the theoretical analysis of the Type 2 censored data. The charaterization of
distributions by the average of the conditional expectation and the average of the
conditional information concerning the truncated distribution is studied here.

1. Introduction

Suppose that Xin, =, Xnn be the order statistics of an iid. sample of sizen from a
distribution functioin F(x). We denote u.» be the expectation of X.n and I:a(8) be the
Fisher information in X . about 6. Let F (x..,=) be the truncated distribution on the left at
Xrin, 16 f(X)/(1=-F(x ). F (.m0 has its importance in statistics, since it is closely related
with the lost likelihood in the Type 2 censored sampling where only first r order statistics

are observed. By Wald’s principle, the lost likelihood of the Type 2 censored data can be
considered as the likelihood of an iid. sample of size n-r from F (x..=. This interpretation

provides us a simple and straightforward way for some asymptotics based on the censored
data given r=np+o(n),0<p<1 and the derivation of the exact Fisher information in the
censored data.(Park,1994 A B)

The characterization of distributions by moments has been studied by many authors. The
classical type is the Hausdorff moment problem. Hoeffding (1953) considered the moments of

order statistics and showed that under mild conditions the set nL=J1 M, completely determines

the parent distribution, where Ma=Allpm:r=1,~,m;m=1,-n}. Chan (1967) transformed this
problem to the Hausdorff moment problem relating the moments of the inverse function of F
where F u)=inf{x|F(x)2u}. The recurrence relation between moments of order statistics
says that M, can be replaced by its proper subset, as discussed by some authors including
Kadane (1971), Arnold and Meeden (1975). We consider here the characterization of

%{)OCI{% /frof. Yoon, Ki Jung's Office, Department of Applied Statistics, Yonsei University, Shinchon Dong 134, Seoul,

_52_



On characterizing distributions 53

distributions by the average of the conditional expectation concerning F (x..,«). We also study

the characterization of distributions by the average of the conditional information concerning
the parametrized F (x,.,o).

2. Main results

Let U ..oy be the average of the conditional expectation, where the conditional expectation,
E(X|X>xrn), is

(P, fx)
E(XIX>xr;n)—£mx TR dx. 1)

We first consider the set {i (xin0)in=2, , @),

Theorem 2.1 If f is positive and continuous, the sequence (W (x,.,=):n=2,,® ) uniquely

determines F.

Proof. Since W (x,. =) is the average of (1) about X ,;n,

Womer = [ A f glodeinfte (1= Fx i) " e

by a probablity integral transformation, letting F(x1..) be u,

1 [o4]
B (o) = L { fF_l(u)xf(x) de ) n(1-u) " 2du.

Let G(y) be another distribution. Then, if U (0=l (y10e), for n=2,- @,

1 @ n-2 4 _ 1 @ _.yn2
fo {L__X(u)xf(x)dx In(1-u) du—J(; {IG_I(u)yg(y)dy In(l-uw) " “du..

Thus, by the completeness of the Legendre polynomials on L; space,

{en)

xf(x)dx= fG_l(u)yg(y)dy

Flw

If we differentiate both sides about u, we have
FYw=GYw for ue(0l).

Thus we have our result.

Corollary 2.1 Lemma 2.1 is true for the set (U . oin=r+1,-,©} where r is fixed
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Proof. We prove this by showing the fact that if

1 1
J(; wlwu W1-w) "= fo o(wu M 1-w) ™Y for n=r+1,~, @, (2)

then wl(w=v(w) ae., (2) implies that

1 1
fw(u)u"=fv(u)u", for n=r+1,~,®, (3)
o o

Muntz theorem says that {x%n=ninz ~} is Li-complete,where n: is a sequence of distinct

positive real numbers, iff gn,: . Thus the result follows.

Example 2.1 The exponential distribution is the only one among the continuous distributions

with a positive derivative on its support, whose M (xyo is (n+1)/n.

Ferguson (1967) found some continuous distributions for which the regression function,
E(X rnlX ye1n), is linear. Wang and Srivastava (1980) found some distributions for which

E(Z X ;) is linear where Z .= ,:2;1(X in—X s/ (n-r). We find some distributions for which

I (xmw) is linear. Some parts in the proof of the following lemma comes from the detailed

lines in the aforementioned papers.

Theorem 2.2 If, for F which is continuous with a finite first moment,
i (xnn,m)=a+(ﬁ+1)u riny for n=r+1, v, @

then F is exponential (B=0), Pearson of type 1 (0>B>-1),and Pareto distribution (B>0).
Proof. By a simiar way as in the proof of Corollary 2.1, we have
E(X!XZXr;n):d+(B+l)Xr;n-

By (1),
fxf(xux:<a+<B+1)xm)<1—F<x,;n>). 4)

The lefthand side is Lm foxdtf(x)dx. Thus, by the Fubini's theorem, (4) can be written as

[T =Rty (@sbr i (1-Flx o).
Then we can solve the differential equation to get our result.

Remark 2.1 This actually includes the result of Shanbhag (1970) and also that of Revankar
et al (1974) who showed that the Pareto distribution is the only one with
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E(X|X>y)=a+(p+1)y for B>0, which has an important meaning in the laws of income
distribution in economics.

We will denote the parametrized distribution as F(x;8), which is assumed to satisfy some
regularity conditions so that I11(8) exists. Let I«.o be the average of the conditional

information where the conditonal information, I (x.e(8lx ), is

(72 [(x:8) 2 flxB)
Fiscm(®lx )= [ (557108 Tohe 8 T on®) 2

Theorem 2.3 The set {I11(0),] (x..o)(8);n=2,~®}, where the integers r=r(n) are allowed to

vary with n(1<r(n)<n), specifies F(x8) in the same manner as {I1:(8)in=1,--, @} specifies
F(x.8).

Proof. Since fr+1-nrn can be interpreted as the joint density of an n - r iid sample from
F(x rin, @),
(n=P)T e (8)=T ri1ninn(B),

where I ,o1-nrn(8) is the average of the conditional information in X tm -, Xnn given
X rn=x rn. By the Markov chain property of order statistics,

I riteniin(0) =l 11(0) =T 1-pn(8). (5)
Let G(vi8) be another distribution. Then, if 7f(8)=I1i(8) and [ me(8)=1.=(8) for
n=2,~,@, we have by (5),

I¥n(@) =TT rn(8) for n=2,-,0, 6)
Thus, the standard recurrence relation in the Fisher information of order statistics(Park, 1994

A),

I1rn-1(0)= —n__%l-f1'“r;n(8)+—;Il'--r+1;n(e),

says that (6) implies
IE(M)=1%.(8) for n=1,,®,
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