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Nonparametric Selection Procedures and
Their Efficiency Comparisons

Joong K. Sohnl) Shanti S. Gupta? Heon Joo Kim?

Abstract

We consider nonparametric procedures for the selection and ranking problems.
Tukey’s generalized lambda distribution is considered as the distribution for the score
function because the distribution can approximate many well-known contionuous
distributions. Also we compare these procedures in terms of efficiency,defined by the
ratio of a probability of a correct selection divided by the expected selected subset
size.

1. Introduction

Since the selection and ranking problems were introduced and formulated, many papers have
been concernd with nonparametric selection procedures. In practice, there are many situations
in which one cannot observe the complete samples because of lack of resources, such as time,
budget, unexpected accidents, but one can at least observe ranks. Also this kind of difficulity
occurs in lifetesting very frequently. Thus, to avoid some difficulties and also sensitivity to
the assumptions on the underlying distributions of the parametric approaches, nonparametric
approaches are frequently used. These can provide robustness against deviations from the
assumptions about the underlying distributions.

Some nonparametric selection procedures in terms of quantiles were considered by Rizvi and
Sobel (1967), Balow and Gupta (1969), among others. Also nonparametric subset selection
procedures based on ranks were studied by Nagel (1970), McDonald (1969, 1972, 1973, 1975),
Gupta and McDonald (1970), Hsu (1978, 1981), Gupta, Huang and Nagel (1979), Huang and
Panchapakesan (1982), Gupta and Leu (1983a), Gupta and Liang (1984), Matsui (1984) among
others.

Nagel (1970) and Gupta and McDonald (1970) proposed and studied some nonparametric
subset selection procedures for the location and scale models which choose a subset including
the best population among k populations. The latter authors considered locally optimal
selection procedures based on some functions. But the optimal choice of the score function
for these procedures has not been studied. Since the rank sum statistic is easy to deal with,
many proposed nonparametric subset selection procedures are based on this statistic.

1) Department of Statistics, Kyungpook National University, Taegu 702-701, Korea
2) Department of Statistics, Purdue University, West Lafayette, IN, U.S.A.

_41_



42 Joong K. Sohn, Shanti S. Gupta, Heon Joo Kim

In this paper we consider the problem of choosing the optimal score function for different
procedures proposed by Nagel (1970) and Gupta and McDonald (1970). The Tukey’s lambda
family of distributions is considered as the distribution for the score function because this
family of distributions can be used to approximate many theoretical (unimodal) continuous
distributions.

In Section 2, the problem of selection and ranking with nonparametric subset selection
procedures is formulated and notations and definitions including proposed procedures are given.

In Section 3, we evaluate those procedures and compute constants which are necessary to
carry out the procedures. Also the score function which leads the procedures to be locally
optimal in the neighborhood of some points is introduced and evaluated.

A Monte Carlo study for the optimal choice of the score function is carried out in Section
4. Some tables containing the results of simulations are provided.

2. Formulation of the problem

Let =y, ...,% be k(22) independent populations and let X; be an observable
characteristic of m;,i = 1, 2,..., k, respectively. Assume that a random variable X; follows a
continuous distribution F( - 18;), and that the family {F(-18)) is stochastically increasing in
8. Here we assume that the 8; are unknown location parameters.

Let X4, =1,...,n be n independent random observations from #n;i = 1, 2,..., k,. Let

R ; denote the rank of the observation X in the pooled sample of kn observations. Define

nH; = gam,ﬂ, i= 12 ...k 2.1)

where a(r) is a score function defined by
-o < g(r) = E(T(NHIG) < @,

where 7T(1) € T(@) < ... € T(N) is an ordered sample of size N=nk from a continuous
distribution G. Let 8y < B <...< 8w be the ordered 6:i's . The population
associated with B, ie. F(x | 8w, is called the best. When several populations have the
same largest value 8 (g, randomly one of them is tagged as the best.

Our goal is to select a subset which contains the best with the usual requirement on the
probability of a correct selection (PCS), ie., for any procedure R,

inf gea Po(CSIR) 2 P7, (2.2)

where @ = {818=(0y...,8¢), B € R*} is the parameter space. Gupta and McDonald (1970)

proposed procedures Ri1(G) and R2(G), which choose a subset containing the best, and
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which depend on the choice of G as follows:
Ri(G) : Select =; if and only if H; 2 max, H;-d, i =1, 2,..., k,
and
Ro(G) @ Select n; if and only if H;>D, i=1,2,..., k,

where d(20) and D(-o <D< ®, are chosen so as to meet the P”-condition. Note that
rules Ri1(G) and R2(G) are equivalent if k=2 Also the rule R:(G) may select an empty
set. A usual choice of ¢ is a uniform distribution which is appealing because of simplicity.
Let n ¢ be the population associated with 8 ;. It is easy to see that, for rules R:; (&) and
R2 ().
Pr(CSIR1 () =Pr(Hw 2 max; Hy - d, j=1,...,k-1) 2.3)
and
Pr(CSIR2(G))=Pr(H w 2 D), (2.4)

where H () is the H, associated with n ¢y, = 1, 2,..., k, respectively.

3. Comparison of the Procedures R;(G) and R:(G)

In order to compare R:(G) and R2(G) for various choices of G, we need first the results

relating to the infimum of the PCS and evaluation of necessary constants,

3.1 PCS for R () and R2(G) and Evaluation of Associated Constants
We state below (without proof) the results reguarding the infimum of PCS for rules Ri1(G)
and R:(G) obtained by Gupta and McDonald (1970).

Theorem 3.1 For procedures R (G) and R (G)

inf gee Pe(CSIR;j (G)) = inf gen, Po(CSIR; (), j=1,2, (3.1)
and further, for the procedures R3(G),

inf geo P 8(CSIR2((G)) = inf g0, P o(CSIR2(G), (32)

where Q={8eQ|8-1y=08) and Q={B8cQ[By=...=6 )
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Remark : When 8eQq procedures Ri(G) and R2((G) are distribution free in the

sense that the distributions of the statistics max 1<j<x Hy—- H; and H; do not depend

upon the underlying distribution F( - {8).

In general, the least favoriable configuration(LFC) of the rule Ri(G) is unknown except for
k=2 ; however, it is known (see Rizvi and Woodworth (1970)) that the LFC need not occur
in 9, In order to compare rules Ri1(G) and R:2((G), for various choices of &, the constants

d and D are chosen to yield approximately the same P* when 6eQo.

The ratio EFF(R) = P(CSIR)/E(SIR) is used to compare the rules, where E(SIR) is the

expected size of the subset selected. Now, taking G to be a symmetric lambda distribution

with location parameter a, scale parameter B and shape parameter v, for B8eQy, we have the

following:
alr) = E(T(NIG)
(3.3)
cqt T(N+1) T(r+7I(N-r+D)-T(DT(N+y-r+l)
- BL(AT(N-r+1) { T(N+7+1) }
N
rz_:la(r) = aN, (3.4)
and
¥, = aK (35)
Now, let a(r)=a+¢,, When N=2m+l, m20, we have from (3.3)
Eomr=-E1,.bm2 = ~EmEm1=0.
In this case, we obtain
E(H) = «q (3.6)
2 VoL _2N(k-1) & e
n"Var(Hy) 2 (N-1) j%:@ﬁ; 3.7
> ¢
-2 - J 2
n? Cov( Hi, H))= - —iqy— - = Ninoll (3.8)
- ,1 < Cov( Hi, Hj)<O0. (3.9

k-1

On the other hand, when N=2m, m >0, we get
CZm = _él yorey Cm+1 = ‘Cm.
Consequently, in this case also we obtain results (3.6) through (3.9) except that the

summations in (3.7) and (3.8) will be from m+1 to N instead of m+2 to N. Gupta and
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McDonald (1970) derived the exact distribution of max 1<jsk Hj~H; for the case of
alR;)=R; for k=3 and n=2(1)5. Also, for a(R;)=Ry; H; is the well-known
Mann-Whitney U-statistic. But in general the distribution of max 1<j<k H;-H; is not known
since it depends on G. However, with a(r) definewd as in (3.3), for k=3 and d20,

Pr{ max i<jx3 H;-H:<d}=Pr{H:-H\ <d, Hz-H| <d}
can be evaluated on the computer.

Without loss generality, one can assume that a=0. The values of a(r), d-values for the
procedure R1(G), and D-values for the rules R: (&), respectively, for k=3, n=3,5 and (B, v)
= (0.57735, 1.00000),(0.19745, 0.13491),(-0.0006589, -0.0003630),(-0.16857, -0.080199) can be
evaluated easily and hence are omitted. These are available based upon request. The four
choices of (B, v) specified above correspond to the cases where the lambda distribution can be
used to approximate uniform, normal, logistic and double exponential distributions, respectively,
each with mean O and variance 1. Accordingly, these choices are denoted by U, N, L, and D,
respectively.

Finally, we briefly discuss how approximate values of d and D can be obtained by using
asymptotic theory.

Theorem 3.2 For 8eQy and for the rule R, (G),

nd
v

P(CSIRI(G@) = [ o (v 2L anio),

where v?=Var(H;)-C, C, is common covariance between H; and H, for i#j, and

d(x) is the cdf of a standard normal distribution.

Proof. By checking Lindeberg’'s condition, one can show that nH;¥Var(H;)-C, Iis

asymptotically normally distributed. Hence the result follows.
The value of d satisfying

[Tkt es 2Ly duie) = P
can be obtained from the tables of Gupta (1963), Gupta, Nagel and Panchapakesan (1969) or
Gupta, Panchapakesan and Sohn (1985), who have tabulated h=nd/v¥2v. Similarly the

following theorem holds for the rule R: (&), whose proof is analogous to that of Theorem 3.2

and hence is omitted.

Theorem 3.3 For B8e€Qy and N=2m+1,

P(CSIR2 () ~ 0% 2-),
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2 _2k-1) & .,
where w® = 2Ty ,-;n-‘:z &

From the above theorem, we have D= ! (moP " ).

3.2 Evaluation of Constants for R (&) and R:(G) using scores ao (r)

In this section, we use a score function ag (r) (to be defined later) in the rules R1(G) and
R2(G) and evaluated the associated constants d and D. In order to define the scores ao (),
consider the density d(x,8), 8€8®, on an interval containing the origin, satisfying the following
regularity conditions.

(i) d(x,0) is absolutely continuous in® for almost every x:

(i) the limit

d(x,0) = lim 5 [d(x,8) - d(x0)]

exists for almost every x:

(iii) lim fm | d(x0)ldx = Jm | dlx,Oldx < @ holds, with d(x, 8) denoting the
80 - @ -

partial derivative with respect to 6.
Note that the existence of d(x,8) for almost every 8 is insured at every point x such that
d(x,8) is absolutely continuous in 8. This, however, does not make the condition (ii)

superfluous.
In deriving locally most powerful tests for equality of location Gupta, Huang and Nagel

(1979) used the score function ag (r) defined by

. r
ab (r) = E{ —g(%%’o%)—], (3.10)

where X4 denotes the r-th order statistic in a sample of size N from the distribution with

density d(x,0). For the location parameter case, ao (r) can be written as

o -1
JF (U »,0,0) } (3.11)

a0 (r) = E{ AF (U »,0,0)

where U () denotes the r-th order statistic in a sample of size N from the uniform

distribution.
Now, specifying d(x,8) to be the symmetric lambda density with parameters d(location), B

(scale) and 7v(scale), we obtain



Nonparametric Selection Procedures 47

le N-1y BOr-Du" P A-w) V(- (1-) "2
b ( ) Y (u" e (1-w) T2

as (r) =

1 _ _ _ -1 _ N-r -1 _ -2
LN(N 1) By-Du" " (- ¥y -(1-) 7P dy,  B>0

Y (uT+(1-w) " H?

For the same values of k, n and (B,7), the value of aj(r), the constantsd and I are

computed and are available based upon request.

Remark: Nagel (1970) and Gupta, Huang and Nagel (1979) have derived locally optimal
subset selection procedures. It follows from their results that the rules R»(G) is locally

optimal in sense that the rule maximizes the PCS in a neighborhood of any B0eQy among all

rules which satisfy inf g, P(CSIR) = P*,

3.3 Comparisons of Procedures R(G) and R;(G)

As we have stated in Section 3.1, the procedures Ri(G) and R2(G) are compared in terms
of EFF(R), which is used as a measure of efficiency. A large value indicates high efficiency.

For a proper comparison of the two procedures, we should have the constants d and D

such that the two procedures will have the PCS aprroximately equal to P* for 6eQ. In our

Monte Carlo studies with k=3, this led to the choice of P* =0.90, 0.95, 0975, for n=3, and P’
=0.75, 0.90, 0.95, 0.975, for n=5.

Further, we considered normal, logistic, and double exponential distributions all with
variance 1, as three possible choices of the underlying distributions. Let 8,82, 05 be the
means of the tree populations =m, 72, 13, We considered four different configurations of
8=(8,, 87, 83}, namely,

I8 =(0,0,01) II: 8=(0,0,05)
r: 8 =(0,0,1), IV: 8 =(0, 05,1.0).

For comparisons using the score function a(r), we choice the four choices of the parameter
(B,7) of the lambda distributionreferred to by U,N,L, and D in Section 3.1. For
comparisons using ao (r) the choice of (B,7), denoted by UD, is made so that the lambda

distribution can be used to approximate the underlying distributions with variance 1.

For each choice of the underlying distribution, random samples were generated by using the
random number generator RVP, developed by Professor Rubin at Purdue University. QOur
results are based on 1000 simulations in the case of n=3 and 500 simulations in the case of
n=5. Table T is reproduced for the cases where the underlying distributions are normal and
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logistic distributions with the mean configuration II for (n, P*) = (3, 090); the patterns in the
other case are similar. Besides comparing the efficiencies of the rules Ri1(G) and R2(G)
under each choice of G, we are also interested in comparing the different choices of G for
each rule. Based on the Monte Carlo study, our conclusions are summarized below.

(1) When the means are close to each other, no rule performs uniformly better than the
other when the underlying distributions are normal or double exponential; however, as P —lI,
the rules R2(G) performs slightly better than the rules R1(G). With means close to each
other, the situation changes when the underlying distributions are uniformly better than the
rule R1(G).

(2) When the largest mean is sufficiently away from the next largest, the rule Ri(G)

generally performs better than the rule R2(G) no matter what the choice of G is. This

behavior becomes more clear as n increases. Also, when P* is close to 1, the difference in
the performances of the two rules narrows down, even through Ri(G) still is better.

(3) Generally, the rule Ri(G) performs better than the rule Rz (& when the choices of &
are the lambda distribution to be the uniform and the underlying distribution F (ie,G is U
or UD) both with variance 1.

(4) Considering the efficiency of the procedure Ri (&, the best choice of G is the lambda
distribution which approximates the uniform distribution with unit variance (i.e., G is U).

(5) For the rules R2(G), the best choice of G is the lambda distribution approximating the
underlying distribution with unit variance. This is all the more clear when the underlying
distributions are normal or double exponential with their means close to each other.

This study indicates that the score function based on uniform distribution is optimal and
robust against possible deviations from the underlying distributions. Also the score function
which is a weighted sum of ranks turn out to be optimal for some procedures. Furthermore, it
shows that the Gupta-type procedure is almost uniformly better than another available
procedure. This is not the same conclusion as that in Gupta and McDonald (1970). The reason
why these results are different is due to the lack of number of simulations in Gupta and
McDonald (1970) for various underlying populations. Also it is due to the fact that they only
use the rank sum statistics.

Considering all the findings of the study, the overall recommendations will be:

(1) When the means of the underlying distributions are expected to be close to each other,
use either the rule R\ (G) with U as the choice for G or the rule R2(G) with UD as the

choice for G.

(2) When the largest mean is expected to be sufficiently away from the next largest, use
the R;(G) with U as the choice for G.
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Table 1. Comparisons of the Procedures R1i(G) and R3(G)
under the configuration 8 = (0,0,05) and P’= 0.90

(a) n=3
Underlving | G| p(CSIRA(G)) | PICSIRAG)) | E(SIRI(G)) | E(SIRY(G)) | EFF(Ri(G)) | EFF(Ry(G))
U 0.969 0.985 2.583 2712 0.400 0.374
(0.005) (0.004) (0.019) (0.014) (0.005) (0.003)
N 0971 0.975 2.607 2658 0.394 0.378
(0.005) (0.005) (0.018) (0.015) (0.005) (0.003)
0971 0.975 2,604 2658 0.393 0378
Normal L (0.005) (0.005) (0.018) (0.015) (0.005) (0.003)
D 0971 0.975 2.604 2.658 0.393 0.378
(0.005) (0.005) (0.018) (0.015) (0.005) (0.003)
UD 0971 0.973 2.607 2.627 0.394 0.382
(0.005) (0.005) (0.018) (0.015) (0.005) (0.003)
U 0.927 0.947 2.668 2.753 0.357 0.348
(0.008) (0.007) (0.018) (0.014) (0.005) (0.003)
N 0.937 0.047 2704 2726 0.355 0.353
(0.008) (0.007) (0.017) (0.014) (0.004) (0.003)
.. L 0.940 0.947 2.669 2726 0.355 0.353
Logistic (0.008) (0.007) 0.017) (0.014) (0.004) (0.003)
D 0.940 0.047 2.669 2.7126 0.3%65 0.753
(0.008) (0.008) 0.017) (0.014) (0.004) (0.003)
UD 0.927 0.937 2.668 2719 0.357 0.349
(0.008) (0.008) (0.018) (0.014) (0.005) (0.004)

U : Uniform distribution
N : Normal distribution
L : Logistic distribuiton
D : Double exponential distribution
UD :Tukey’s generalized lambda




Table I (continued)
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(b) n=5
g.“de.r‘yi‘.‘g P(CSIRI(G)) | PCSIRAG)) | E(SIRIG)) | E(SIRAG)) | EFF(R(G)) | EFF(Ro(G))
istribution
0988 0.990 2528 2,590 0431 0.397
(0.005) (0.004) (0.029) (0.022) (0.008) (0.004)
0.984 0.986 2,534 2.584 0.427 039
(0.006) (0.005) (0.022) (0.022) (0.008) (0.004)
Normral 0.986 0.986 2542 2,604 0.426 0.392
° (0.005) (0.005) (0.022) 0.022) (0.008) (0.004)
0.986 0.988 2.546 2.612 0.426 0.392
(0.005) (0.005) (0.022) (0.022) (0.008) (0.004)
0.984 0.986 2532 2.586 0.425 0.396
(0.006) (0.005) (0.022) (0.022) (0.008) (0.004)
0.952 0954 2732 2,726 0.428 035
(0.010) (0.009) (0.023) (0.020) (0.008) (0.005)
0.952 0.948 2726 2716 0.359 0.355
(0.010) (0.010) (0.023) (0.020) (0.006) (0.005)
Logisti 0.948 0.948 2726 2.710 0.361 0.355
gIstic (0.010) (0.010) (0.023) (0.020) (0.006) (0.005)
0.948 0.950 27134 2.710 0.357 0.356
(0.010) (0.010) (0.022) (0.020) (0.006) (0.005)
0.956 0.952 2.732 2.712 0.359 0.357
(0.010) (0.010) (0.023) (0.020) (0.006) (0.005)




