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Successive Over Relaxation Method in Torsion Problem for
General Shaped Section
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Abstract

In this study a general computer program TORSION is presented to calculate a torsion con-
stant and shear stress for any section shapes with or without holes. From the membrane analogy a
finite difference method with Successive Over Relaxation are used to accelerate the iteration.
Automatic Boundary Generating Technique relieved the cumbersome efforts to prepare the in-
put values of boundary for the general shaped section. Parametric analyses were conducted
using the program TORSION. Approximate formulas for the general shaped hollow sections were
proposed and compared with those from the Korean Concrete Standard.

Keywords : TORSION, torsion constant, shear stress, membrane analogy, successive over
relaxation, automatic boundary generating, general shaped section, finite difference method.
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1. Introduction

The torsion problem in various shaped
sections have a long history and at the same
time have been a continuous research subject.
Since the problem of torsion in an elastic cir-
cular member was first studied by Coulomb'!-?’
in 1784, solutions for those of non-circular
cross sections such as rectangular, elliptical,
triangular and others were presented to the
French Academy by Saint-Venant'!>* in 1853,
Prandtl‘t>3" introduced a very valuable mem-
brane analogy between the stress function in
the torsion problem and the deflection of a
membrane under uniform loading. Following
the membrane analogy, approximate torsion
equations for flanged sections such as T, L
and I shape were suggested by Bach'! in 1911.
Solutions of torsion problem using other
method such as energy method'?’ and
hvdrodynamic analogies'”’ were also
introduced. Assuming the shear stress i1s uni-
form through the thickness, Bredt'!®’ derived
a very simple equation form for a thin tube.
Finite difference method in the application to
the various torsion problems were published by
Southwell and his students'' in 1946 whereas
a general concept of finite element method
using different element types to solve torsion
problem was explained by Bickford'”. The dif-
ficulty remains however because each method
can be applied only to one or some of the cases

and sometimes it requires cumbersome efforts,

2. Governing Equations

membrane analogy'“>*1 stems from the obser-
vation that both the stress function and the
deflection are governed by Laplace's harmonic
differential equation, and also must satisfy the

same boundary conditions. When a homogen-
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ous membrane such as a soap film subjected to
a umform load per unit area, q, within a
boundary having a shape similar to the cross
section of a given torsion beam, the uniform
tensile force per unit length of the membrane
denoted by S produces a deflection w, For an
1solated infinitestimal element, the equilibrium
of forces in the vertical direction gives the fol-
lowing equation,

= -4 (1)
ax” ay*

where w = the deflection of the membrane, g
= the uniform load per unit area of the mem-
brane and S = the uniform tensile force per
unit length of the membrane. Comparing with
the Airy’s stress function®, volume of the
deflected membrane equals to the half of the
torsional moment and the slope of the mem-
brane matches with the shear stress. At each
boundaries, both deflection of the membrane
and the Airy’s stress function are zeros. Then,
the torsion constant Ky is related to the vol-

ume v of the soap bubble by the equation

45 (2)

where K. = the torsion constant and v = the
volume bounded by the deflected membrane,
The shear stress at any point due to torque T
is related to the slope m = aw /an and volume
v by the equation

F=10 (3)

where 1 = the shear stress at any point, T =
the torque, m = aw/ an = the slope of the
membrane and n indicates the normal direc-
tion. It was shown'? that in the case of
section with holes the stress function, w, must

not only satisfy Eq. (1) but also the boundary

23| =53

T
Ao
™



of each hole we must have
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where A denotes the area of the hole. Eq. (4)
means that the load uniformly distributed over
the area of the hole is balanced by the tensile
forces in the membrane. In other word, the
hole is represented by a weightless absolutely
rigid plate which can move perpendicularly to
the imtial plane of the stretched membrane.

3. Solution Method

Finite-Difference Method was used to solve
the differential equation (1). Using the second
polynomial with central interpolation we obtain
the approximate values of second derivatives
such as
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where h, = the x-direction interval and h, =

the y-direction interval,
Substituting Eq. (5) into Eq. (1) gives

aw;_y 2004w, Fawi g Fw ot w g

== (hy)=% (6)
where o = (h, /h,)% i = the x-direction node
and j = the y-direction node. Assuming an

equal interval in x,y directions Eq. (5) can be

simplified as

Wi-1, J+W1H, iAW, J+Wi4 i "1+W1, itl
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where h denotes the interval of the meshes.
Various' iterative methods can be used to solve
this equation. Southwell'” wuse Relaxation
Method to treat the differential equation as

w = w, O s O

—dw, Otw w0 ()

where the superscript (0) indicates previous
iteration number, Replacing simultaneous
terms calculated at the previous iteration with
successive terms evaluated at the present iter-
ation process and assuming q =~ 4 S we get

w ](p 4 1J_1_T_,le )“”‘H’ll’F% {W“ L ’(1))+‘N‘ N Jtm D

1

_4WL !1;>)+WI . ](;>},+W] 1 7[\;)4»1)}
(9)
where the superscript p indicates the iteration
number. If we define the residual forces r as

oz L (p1.]. (pd 1
Ix.jp =h **1 {Wlil,pri'WrL ’

}

_1WI ’!p)+WL ] IH))+WI, } vl(p‘i'l)} (1m

Then, Eq. (9) can be re-written using the re-
sidual forces r as

[T P (p) !
W, pl =W p +r}v J(p (1D

When the residual forces become negligible,
the solution satisfy the governing equation,
Various acceleration technique can be adopted
to accelerate the iteration process. One of the
most efficient method is to use an optimum
as

over relaxation factor, Yoyt

(Pt 1) e ) (5
WH pt1 “'7W|_ J(p/_{,_%mri‘ I;m (12)

larnmme
where a,,,=2 /{14 14},

n n
and ;LE:: \_“ {r‘<p)}2 / S“ r tp) rl(pﬂ)

o, bt 1
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We call this process as Successive Over Relax-
ation Method (SOR) which combines successive
displacement with over relaxation method.
This method accelerates the convergence rate
significantly. In case of section with holes, the
boundary condition of Eq. (4) was discretized
after assuming q = 4 S as before,

n
Y w,—n w,H4A=0 (13)
(X Y
where n = the number of strings attaching
the area of the hole to the rest of the net, w,

= the deflection of a nodal point i adjacent to
the hole, w, = the deflection of the boundary

of the hole and A = the area of the hole.

4. Automatic Boundary Generating Method

Computer program TORSION has been de-
veloped to satisfy Eq. (12) with the boundary
conditions, i. e, , zero for the solid section and
Eq. (13) for the hollow section. An identifying
the boundary values of the rectangular and cir-
cular section is relatively simple but those of
the general shaped section require cumber-
some efforts. For the simple input process of
the boundary condition, the algorithm of Adwro-
matic Boundary Generating Method has been de-
veloped. The Automatic Boundary Generating
Method (ABGM) starts with using the
characteristics of the intersection of the lines,
The maximum and minimum x,y coordinates
are .decided using the vertices coordinates,
Then, grid lines X,y direction each are
composed using the points of minimum and
maximum, (Generated grid lines in one direc-
tion will intersect with the boundary line of
the section and the total number of intersec-
tion becomes 2i, where i = 1, 2, 3--- depending
on the shape, The intersection coordinates will
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be stored and was checked using the other di-
rectional grid lines. A detail flow chart of the
ABGM was shown in Fig. 1. Using this tech
nique the boundary coordinates in any section
could be found without any difficulty,

5. Numerical Example—Rectangular Solid
Section

As a simple example, torsion constant, K,
and maximum shear stress, r,,, were calcu-
lated for the same problem introduced by Hsu‘!
who used St. Venant's semi-inversive method.
He calculated St. Venant’s coefficients for rec-
tangular sections with different side ratios
{(==d /b, d==the large and b=the small dimen-
sion of rectangular cross section) ranging from
1.0 to 100 using eight terms and eight signifi-
cant figures. He also showed the coefficients
of the maximum shear stress to the torque.
Comparison of the results from the present
study with those from Hsu'' were made in
Table 1 and the agreements were excellent. A
typical solid rectangular cross section with

Table 1 Comparison of the results for x and

, p | 2

70 150 Vera (1) [Prset Sty 1. Verant 1] st Sy
10 0141 Gl 02 0.20870
1.2 0.166 016606 0.219 0.22085
14 0187 01es 0.227 0.22870
16 02 L 0% 0.2 0.2355
L8 0 027 | 0217 0240 1 024173
20 024 L 0o 0.246 0.24718
25 0.249 0.24927 028 0.25%01
30 0.264 025328 025 026855
10 0.281 10,2807 0282 0.28%07
50 0; 0208 0.291 ‘ 0.2925
10.0 0312 | 03zm L 0312 0,317
000 03 | opks | 0wl ‘ 03353
Note : Ky = fibid, 7., 1‘
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Table 2 Comparison of the iteration numbers

Method ; Iteration Convergence
\ Number Cl’lIrCEliVir -
Simultaneous 75) 104 1LOE Qv
Successive AT LOE9
SOR 679 LOE9

i
7,,/,',(’/4,”‘,, Hik

Fig. 3 Stress contour(kg/ cm?)

the effectiveness of the Successive Over
Relaxation Method. Three different iteration
methods such as Simultaneous Iteration, Suc-
cessive Iteration and successive Over Relax-
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ation (SOR) were used and the number of
iterations from each methods were compared
as shown in Table 2. The deflected membrane
shape and the stress contour using torsional
moment of 2() ton-m were shown in Fig. 2 and

Fig. 3, respectively.

6. Numerical Example —Hollow Square
Section

The torsion problem for a hollow square sec-
tion was solved by Southwell'™, He solved this
problem for one eighth of the section because
of the geometric symmetry as shown in Fig,
4a, He assumed the outer and inner boundary
values as zero and 1210, respectively and
solved the torsional membrane equation using
Relaxation Method. We used the same bound-
ary values in this study and solved Prandtl’s
membrane equation using the optimum Over
Relaxation factor. The result from this study
and those by Southwell'™ showed a very close
agreement as shown in Figs. 4. The deflected
shape and the stress contour of the hollow
square section showed in Figs. 5 and 6 using
torsional moment of 20 ton-m. Fig. 6 also
shows that the stress concentration factor at
the re-entrant corners is approximately 1.7
which is comparable to those calculated by
Southwell”. In this case, the radius of the
fillet was 10 % of the thickness,

Torsion problem of hollow section with
double cells was also solved using computer
program TORSION. The deflected shape of
the membrane and the stress contour were
shown in Figs. 7 and 8, respectively using tor-
sional moment of 20 ton-m. It shows that the
stress concentration at the corner without a

fillet is very high.
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Fig. 4(b) The height of membrane by southwell™’
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7. Approximate formuias of Torsion Con-
stant for Hollow Section

Practically in most of concrete structure a
hollow section such as circular, rectangular, el-
liptical, etc. is inevitable to reduce the hy-
dration heat during the curing process. The
evaluation of the torsion constant of the hol-
low section, however, is ambiguous due to the
two different approximate methods. The tor-
sion constant of a thick-hollow section can be
found by calculating those for the shape of the
outside boundary and deducting the value
calculated for the inside boundary using the
data from Table 1. The torsion constant of a
thin-walled hollow section, however, can be
evaluated using the approximate formula
proposed by Bredt'l: 2 as

K= Tégg—z/_t_ (14)
where A is the area enclosed by the center
line of the walls, shaded area in Fig. 9 and §
ds /t is the integral round the wall center line
of the length divided by the wall thickness.
The question comes right away how thin the
wall to apply Bredt's equation and the judge-
ment only depends on the past experiences or
intuitions.

When any thin-walled hollow section 1s
transformed into an equivalent circular hollow
section which has same torsion area, the tor-
sion constant will not be changed since the
torsion constant of a thin-walled hollow section
is a function of the same variable A. The
equivalent radius a and the equivalent thick-

ness t., can be formulated as

A t ds
a=y and t., = A (15)

where a is the radius of the equivalent circular

section from the center to the center line of
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the wall, and t., is the equivalent thickness of
the wall as shown in Fig. 9.

Since Bredt’s equation assumed an uniform
shear stress through the section, the error
becomes large as the wall thickness increases.
Using the computer program TORSION, the
torsion constant for various hollow sections
with different wall thickness were calculated
and compared with those from the approxi-
mate thin-walled formula shown in Eq. (14) for
the various non-dimensional constant a/t.,.
The magnitude of error from various cases for
a/t,, was bounded to the error function. An
equilateral hyperbola type error function, then,
was obtained up to the certain range as shown
in Fig. 10.

Error (25)=100—30(te, /a)*"?
ta/teg=1.5 (16)

Now, the approximate formulation of the
torsion constant for any hollow section are
obtained combining Egs. (14) and (16) for the
range of a /t, =1.5.

K = Thick —Hollow Section Theory
ta/teg<1.5

:%d[gz/_t { 1 _0'30(téq /a)S//Q } -1 (17)

ta/te =215

where Thick-Hollow Section Theory evaluates
the torsion constant by assuming the solid sec-
tion using the outside boundary and deducting
the value using the inside boundary.

The torsion constants for the three different
rectangular hollow sections were calculated
using the approximate formulas and compared
with those from the exact values using the
program TORSION and from the Korean Con-
crete Standard'”. Figs. 11 showed that the

Zaestsi=2H



proposed approximate formulas gave much 7 /a*{k_e.fgj
. Pl
better solution than the Korean Concrete =~
Standard. § 657
= //
X 55
t] g
x o
§ 45 J
v - ) /‘
g [ fi g g / e Hoxact 1
Vs sLS S SSSSSSA z 35 / ] Korean Concrete Standard
NS S S S S S S j e} ES' | d’/ Aededed Approximate Forna
/////////// 25\ ; ! ‘
d £ i 0.0 0.1 0.2 0.3 0.4 0.5
h/x
L b [ Fig. 11(a) Comparison of torsion constant(200 x 400cm)
where h=thickness, x=:shorter side length
Fig. 9(a) Hollow rectangular section
130 § ’
- 120j
£ !
2 1104 ‘
x 100 |
E 90 ‘
R
a 8()41
&) i i
5 7“7 // ot |
2 (/) e b ‘ I
— N X b Forean Conerote * andire
EE 60~ / e Ao P-}un::;) o i
T
0.0 0.1 0.2 0.3 0.4 0.5
(%3
Fig. 9(b) Equivalent circular section Fig. 11(b) Comparison of torsion constant(200 X 600cm)
where h=thickness, x=shorter side length
10 3 100 7
9 - i %
G() = 350+ D
| g
3 8 | = |
s ; =300
= 80 Z !
g 75 | :‘é 2500
x e EXAMPLE (200 % 400) ; 7 M i
i 70 Gt EX AMPLE (200 x 600) 5’ 200 'j }
= 57 e ] EXAMPLE (400 % 400) | g g :
- - N . ! B K L
60 wssd ERROR FUNCTION | é’ 150 — o 18R Korean Concrete Standard
55 ‘V = : ek Approxamate Formuls i
i X
5()I|;1|111111|7||\|]|ry11[rré 100 T : T T ; ‘1‘
L5 3.0 45 60 75 9.0 105 12.0 135 15.0 0.0 0.1 0.2 0.3 0.4 0.5
/ hox
4/t
Fig. 10 Error function for the various sections Fig. 11(c) Comparison of torsion constant{ 400 x 400cm)

where h=thickness, x=shorter side length

X6 15 1994.2. 109



8. Conclusions

General computer program TORSION was
developed and proved to be accurate to calcu-
late a torsion constant and shear stress for any
section shapes with or without holes. Success-
ive Over Relaxation Method was very efficient
to accelerate the iteration process for the fi-
nite difference method. To relieve the cumber-
some efforts to prepare the input values of
boundary for the general shaped section, Auto-
matic Boundary Generating Method was de-
veloped and applied effectively. The approxi-
mate formulas to calculate the torsion constant
for the general shaped hollow section were
very simple and gave much better solution
than the Korean Concrete Standard.
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