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1. Introduction

The objective of this paper is to discuss a
methodology for on-line detection of tool wear
and chatter in machining. The approaches
presented will be based on the integralion of
acceleration

acoustic emission(AE) and tool

signals. These signals are processed by either
time series modeling or frequency band

averaging for use in conjunction with an arti-
ficial neural network in developing the knowl-

edge regarding the state of tool wear and
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chatter.

The extent of tool wear in a machining
operation has a strong impact on the surface
finish and dimensional tolerance of the work,
as well as the vibration level of the machine
tool. To monitor tool wear during machining,
a wide variety of methods has been proposed
to capture the change of rubbing contact of
the work and tlool flank interface due to the
enlarging wearland in machining. These methods
include the measurements of spindle power,
and AE(-9,

acceleration, cutting force,
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In addition to tool wear, chatter vibration of
the cutter presents yet another nuisance to
metal cutting processes. Chatter in machining
has adverse effects on surface finish, dim-
ensional accuracy, tool life, and machine life®
thereby making the monitoring of its behavior
an important issue. There has been a
considerable amount of research attention
focused on the monitoring of machine tool
chatter, Among the candidate solutions are the
measurement and analysis of workpiece
displacement, velocity, acceleration, and
machined surface characteristics(3 5 6),
Although many studies have been documented
in the area of tool wear or chatter monitoring,
few

monitoring of both

reports have studied the simultaneous

tool wear and chatter.
Investigations on the dynamic characteristics of
cutting force signals in relation to the level of
tool wear showed that the dynamic variation of
the force becomes important umnder worn tool
conditions because of the vibrations produced
due to flank friction between the tool and
workpiece - 8. These studies indicated a strong
coupling between the wear and the chatter of
that any
monitoring system concentrating on only one of

cutting tools thereby suggesting
these phenomena may not be practical and cost
effective for actual factory floor applications.

In this paper the detection of both chatter
and tool wear is performed using an artificial
neural network with AE and acceleration signals.
These signals are pre-processed by either time
series modeling or frequency band averaging.
The use of time series models is motivated
herein by the uncertainty and time-variation
characteristics during

involved in the signal

actual machining, For instance, the possible

shift of chatter vibration frequency in turning®
renders any monitoring approach based on a
slow-varying signal feature incapable, omn the

other hand, time series models can be made
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adaptive to reflect the instantaneous cutting
condition as affected by tool wear and chatter.
In the frequency band averaging method, the
in the frequency

problem of signal analysis

domain is converted into the time domain,
therefore the characteristics of cutting states in
the frequency domain can be exiracted conv-
eniently without further spectral analysis®, and
the contradiction between data processing speed
and accuracy can be overcome.

The following sections discuss the sensing and
signal processing methodology involved, the
turning set up, experimental procedure and the

results.

2. Sensing System Design

" 2.1 Acoustic Emission and Acceleration in

Machining
The wear of a cutting tool is expecied io
affect AE signals through the change in the
tool geometry and the change in the chip form
due to a lower sirain hardening effect brought
Thus the dy-
namic variation of an AE signal often carries

about by a higher temperature.

information regarding the state of tool wear.
AE signal
response to the

In the case of chatter vibration,
characteristics change in
variation in the basic mechanics of the cutling
process accompanying the tool-work vibration,
This includes the change in strain rate due to
the change of the tool tip velocity and of the
volume of material being removed at any instant
of time as a result of varying chip thickness.
Therefore the analysis of AE can be a relevant
tool for the monitoring of machining chatter 10
as well.

The behavior of flexural vibrations of a
cutting tool during machining in relation to tool
wear has been investigated by Del Taglia et al
(. His work, using a carbide tool in turning
carbon steel workpieces, showed that the
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spectral magnitude of the tool acceleration

signal, in the range up to 2.5 kHz, increased
up to seven times while tool wear increased
from a very small value to about 1.5mm. The
same methodology was applied to the monitoring
of chatter stability2 and results showed that
the modal damping ratio in combination with the
distribution of modes to the total vibration
power of the acceleration signal were good
indicators for imminent or existing chatter
conditions, These studies suggested that useful
information regarding both tool wear and chatter
is expected to be coded in the measurement
of tool acceleration and vibration,

In this paper, AE and acceleration signals are
the
monitoring of machining conditions in terms of
Each

signal is either decomposed in the orthogonal

measured and processed in parallel for

both toel wear and chatter vibration.
parameter space of an adaptive time series or
represented by the energy level averaged over
frequency bands. The non-stationary model
parameters, or the average energy levels, were
used as feature inputs fo an artificial neural
network for optimal weighting of signal sensi-
The details

of the signal processing schemes are provided

tivity to the machining condition.
in the following sections,

2.2 Autoregressive Time Series Model
Autoregressive nth order time-series are used
to model both the AE and acceleration signals
in this study. The models specify current value
of the measurement, y(k), as a linear combi-
nation of n previous values,
y(k)=w(k)+§a;y(k-i) o))
where kis a discrete time index, w(k} a white

noise, and 4’5 are the time series model

parameters. Defining the parameters vector &7
(k) and the measurement vector ¢ (k) as:

A118
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2T (1994.49)

87 (k)= lawaz...an) (2)

oT(k)=[-y(k~1),~y(k-2),...-y(k-n)] (3

a parameter adaptation algorithm based on the
minimzation of least square estimation errors ()

is implemented to calculate the parameters
recursively at each sampling cycle,
= _TF(1 Flo(k)
Ble+ 1)= 80k Ty Flioe (k)
(y(k+1)- 8T (K)o (k)) 4)

F(k+1)= 'X—II(E;-[FU‘)-

Ao (k) FUk)o ()o T (k) F k) ]

)
M) +Xa(k)o” (k) F (ke (k) ©

whereé’l‘(k) is the estimated parameter vector
at time k and F is an adaptation gain matrix
and A Ay are the constant adaptation gain.

2.3 Banded Energy Method

In the analysis of banded energy only the
average spectral density function over certain
it is not

frequency hand is considered, and

necessary to obtain the power spectrum
distribution over the entire frequency range,
Given the low and high cut-off frequencies of
fi and f, the band

average energy can be expressed as:

a band pass filter as

1

T
= Tirm b 2
Ex.BPF(t)-!'rl_:l.l(} a J-r x*(1) perdr ()]

= _I":Gx(f)df

where G.(f) is the one-sided power speciral
density function of the signal x(t), while Leex'
is the band-pass filtered version of x(t). Dased
on this transformation, direct monitoring of the
output signal of the filter in the time domain
extracts frequency characteristics that are
varying with time.
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2.4 Artificial Neural Networks

Studies in the area of artificial neural nets
started in the 1940's, however, the technology
arrived at ifs current form with the contributions
of many researchers from different fields(4,
includes the

Typical application development

works of Dornfeld et 2l'®, Chryssolouris et al.

(168) and Okafor et al 17 for the monitoring of
machining processes and machined products.
neural

The
inputs are connected to the input layer of the
network. Each connection between the layers
has a weighing function and each node has a
The values of the

The basic structure of an artificial
network may be generalized by Fig. 1.

logistic activation function.
weights can be selected using the back
propagation method. This process, commonly
referred to as the “training”, has two phases.
In the first phase the output value is calculated
for each umit after the input is represented and
propagated forward. Then the output values are
_compared with the expected outputs to formulate
an error. In the second phase, the error value
is passed through the network backward and
Once the weights

repeated back

weight changes are made.
reach stable values over
propagation, the training can be considered
complete and the weights can be utilized to
determine the values of the outputs in actual

service.

Fig. ] The structure of a multi-layered artificial
neural network,
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3. Description of Experiments

Machining experiments were performed on a
conventional lathe using carbide insert cutters
to turn 1045 steel workpieces of 235mm length
and 50mm diameter. A piezo-electric AE sensor
(Physical Acoustics R15) was mounted to the
tool shank, Signals from the AL sensor were
first amplified by a 40 dB preamplifier (Physical
Acoustics 12204),
an Acoustic Leak Monitor (Physical

and then postamplified with
Acoustics
ALM-8). An energy measurement board conta-
ined in this monitor provided a voltage signal
proportional to the root-mean-square of the
input signal. Meanwhile, an accelerometer (Kistler
8638B) with (.5-5kHz bandwidith was mounted
to the back side of the tool shank. The
accelerometer signal was amplified by a charge

amplifier (Kistler 5004) prior to being digitized

with an emulated digital oscilloscope. The
digitization rate for both the AE and the
accelerometer signal was 20kHz. To avoid

aliasing, the signals were pre-filtered at 10kHz.
The schematic diagram of the set up is shown
in Fig. 2.

In the machining iests, the cutter traveled,
parallel to the spindle axis, from a positon near
the chuck to the other end of the work. Fig.3

AE Sansor
Cutting Tood
Workplace
Accaleromatar
Preampiliel Charge
Ampifier
RMS Corvertor
Y
Microprocassor Digial Osdbampe]

Fig.2 Schematics of the experimental set up.
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shows a tiypical recording of the AE and the
acceleration signals for a cul conducted at
550rpm  spindle speed, 0. 066mm/rev feed,
0. 762mm radial depth of cut, while a fresh tool
was used. Also shown in the figure is the
machined surface profile as measured off-line
with a stylus profilorometer (Hommelwerke LV-
50). Note that the AE and acceleration data
are presented with respect to the cutting length
in lieu of the cutting time, thereby allowing the
data to be synchronized to the surface profile
measurement. The onset of chatter can be
recognized at around 10mm of cutting length
in view of the increased AE and acceleration
signal intensities. The transition from stable
cutlting conditions to chatter
indicated by the marks left on the workpiece.

To study the effect of a worn tool, prolonged
periods of cutting were implemented to naturally
develop the wearland on the insert. Fig.4 shows
the recording of the AE and the acceleration
signals with the same cutting parameters as

vibration was

€ 30
2 20
% 10
g o
§ -10
8 <20
@ =30

=z 5

[~}

< 4

g 3

u o2

E

2

& 02

g o

[

§ -0.2

4l .
e S S 10 12 14 16
Cutting Langth (mm)
Fig.3 AE, acceleration, and surface roughness

at the onset of chatter in a fresh tool
cut.
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Fig.4 AE, acceleration, and surface roughness
al the onset of chatter in a worn tool
cut.

Fig.3 except for the use of a worn tool with
an average wearland of 0.3mm and a maximum
wearland of 1.1mm. Similarly, the onset of
chatter can be concluded from the
signal intensities at around 8. 5mm. This point
can be further conlirmed by the surface profile
as shown in the figure. Comparing Fig.4 1o
the coupling between chatter
is qualitatively evidenced by

increased

Fig. 3, however,
and tool wear(®
the fact that the chatler occurred at a shorter
overhang distance from the chuck while a worn
tool was used. However, it is seen that the
slable cut with a worn tool can have a signal
intensity comparable to that seen in chatter with
a fresh tool. K This suggests that the individual
contribution from the tool wear and chatier to
the AE or the acceleration signal cannot be
readily distinguished as far as signal intensity
1s concerned. The ability to effectively monitor
and differentiate tool wear and chatter requires
a more sophisticaled signal processing scheme
other than simple observation of the signal

intensity.
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Average energy level for the frequency band
of 80-500 Hz was calculated for both the AE
and acceleration signals. This band was closely
related to tool wear and chatter vibration as
the first order resonance frequency of the chuck
-work system was identified to be around 200-
250 Hz by impact tests, Fig.5 and 6 shows the
AE and acceleration power spectral densities in
and chatter instability

different tool wear

conditions. Again, conclusive remarks can not
be made regarding the state of tool wear and
based on
frequency contents,
230Hz AE signals that took place even while

the cutting was stable with no chatter marks

chatter the observation of these

especially in light of the

left on the work.
the AE and the accele-
ration signals were modeled individually via two

As a step further,

autoregressive time series, each of 4-th order.
Then the two sets of model parameters and
average energy levels over 80-500 Hz, 80-5, 000
Hz, and 80-10,000 Hz bands were processed by
a sigmoid function based artificial neural net-

work with 3 layers. Fig.7 shows the overall
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Fig.5 Acoustic emission power
turning with (a) fresh tool
condition, (b) worn tool
condition, (c¢) fresh tool in chatter,
(d) worn tool in chatter.
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Fig. 6 Acceleration power spectrum in turping
with (a) fresh tool in stable condition,
(b) worn tool in stable condition, (c)
fresh tool in chatter, and (d) worn tool
in chatter.
schematics of the signal processing scheme
utilized in this study. The hidden layer contained
10 nodes,
outputs. The first output refers to the condition
“-1" being assigned to the
state of fresh tool and ‘1" for a worn tool;the

and the output layer delivered 2
of tool wear with

second output refers to the condition of chatter
vibration where ‘1" represents a stable cut with
no chatter and “1" represents the case of
chatter. The inter-layer weights were developed

through the back propagation method using

RMS AE Accaleration
Signal Signal
Soras Sarias Frequency Band Averaga
TI' \mudal ﬂmo”: dal of AE and Accelaration
Modal
Parametors
{ Noural Network
Chatter Tool Wear
-1+ <1+l

Fig. 7 Artificial neural network with multiple time-
serfes models and band-filter energy.
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either 22 sets of AE and acceleration time series
data, or 14 sets of AE and acceleration average
energy levels from known tool wear and chatter
conditions. The cutting process parameters
ranged from 340 to 900 rpm of spindle speed,
0.041 to 0.084mm/rev of feed, and 0.76 to

1.02mm of depth of cut.

4, Result and Discussion

4,1 Mode| Parameter and Average Energy level

Fig.8 shows a plot of the first parameter in
the acceleration time series, Cac, 1, with respect
to the first parameter in the AE time series,
the
tested. The "X's" represent the parameter values

Cac,1, over range of cutting condition
associated with the case of a worn tool, while
‘0's” Note
that with this designation the chatter condition

are for the case of a fresh tool

is not specified. From the clusters in the plot
it is seen that the wear of the cutter caused
the first parameter of the AE model to assume
a greater the
separability of the two clusters on the plot

value. However, liner in-
suggests that the possible existence of chatler
tends to confuse the detection of tool wear
based on the two parameters alone.

The same two parameters are plotted again
in Fig.9 to show their sensitivity to chatter,
The *“X's”
associated with the case of chatter vibration,
“0's”
The first parameter of the acceleration model

represent the parameter values

while are for the case of a stable cut.
took on a greater value as chatter occurred.
In this plot the cluster for chatter was sep-
arable from that for stable cuts, Compared to
Fig.8, the condition of chatter appeared to be
more detectable than tool wear based on the
two parameters presented.

On the other hand, Fig.10 and 11 show the
results of the average energy within 80-500 Hz
in the acceleration signal with respect to that

114
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of the AE. It can be seen that chatter vibration
was again more detectable than the tool wear
condition.

4.2 Detection of Tool Wear and Chatter

All four parameters in the acceleration time
series and the four in the AE time series used
jointly as inputs to the artifical neural network
yielded the results shown in Fig.12. Also shown
in the figure are the results based on AE or
based on acceleration only., These results were
based on 22 testing data. The tolerance in the
plot refers to the acceptable output deviation
from the designated output value for a certain
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X : wom tool o
3 8 % O T
= ! >
g 04 o
- Q & X
° | % o ]
S o2} © © ]
L Q % J
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0.1 0.3
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Fig.8 An AFE-acceleration parameter plane for
different tool conditions.
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X @ chatter X X
! X 1
z | 8 X x
T 04 o &
(@]
3 Do © ©
doa2f © o ]
Ct O o ]
0 . .
0.1 0.3
Cazt of AR(4)

Fig.9 An AE-acceleration parameter plane for
different chatter conditions.
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Fig. 10 An AE-acceleration average energy plane
for different tool conditions.
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Fig. 11 An AE-acceleration average energy plane
for different chatter conditions.

class of condition. For instance, with a
lolerance of &, the first output value that falls
within 1 and 1-¢ voices a worn tool. If it falls
between ]-§ and -] a fresh tool condition is
indicated.

It is seen in Fig.12 that the acceleration
signal always performed better than acoustic
in terms of tool wear monitoring.
Additionally, the integration of both acceleration

and acoustic emission measurements provided

emission

rates comparable to the use of
In this figure the
succes rate increased wilh folerance as most

success

acceleration signal alone.

82

of the marginal data, with neural net output
values close to zero, yielded accurate diagnostic
of tool wear.

The results of chatter detection are given in
Fig.13. The acceleration measurement cons-
istently provided a noticeably better performanec
than AE. The trend for the success raie to
follow the tolerance is observed in neither
acceleration nor AE measurement. It is indicated
that the marginal

information therefore the inclusion of those data

data provided incorrect
in decision making did not guarantee a better
performance.

Fig. 14 shows the succes rate for combined
detection of tool wear and chatter. Again the
acceleration measurement outperformed AE with
a widening difference in the success rate for
larger tolerance. A tolerance of 60% appeared
to be the optimal value for both the AE and
acceleration in terms of the success rate.
Generally speaking, the detection system based
on AE alone showed success rates ranging from
55% to 70%,

low for practical

which can be considered rather
applications., However, as
acceleration signal was usad in conjunction with
AE the success rate improved to between 70%
and 90% depending on the cutting parameters,
chatter condition, and the

tool condition,

tolerance selection.

On the other hand, Fig.12, 13 and 14 also
display the success rate of the band averaging
method. With this analysis, the performance of
the arlificial neural network for the integration
both with 14
testing data sels, were compared. The average

of AE and acceleration signals,

energy level is seen to have a successful rate
ranging from 85% to 100%, which outperformed
the time series modeling in the detection or
either tool wear, chatter, of both. A tolerance
of 80% appears to be the best value for {he
energy analysis in yielding the highest success
rate for all the cases tested in this study.
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5. Summary

A technique to detect cutting tool wear and
chatter using a neural network with features of
either time series model parameters of frequency
band energy levels, of acoustic emission and
acceleration signals are discussed and compa-
ratively evaluated in this paper. The study

HIIA A2T (1994.49)
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Fig. 14 Success rate as function of tolerance and
sensor used for the detection of both tool
wear and chatter. Legend is the same
as Fig. 12

showed that acoustic emission and acceleration
signals are sensitive to the fundamental changes
of machining mechanics in the presence of tool
wear and chatter.

Time series model parameters and frequency
band average energy levels can be advanta-
geously used to reflect the effect of tool wear
and chatter on acoustic emission and accele-
ration measurements. Experimental resulis from
a series of machining tests further revealed the
effectiveness of artificial neura networks in
decoding the subtle signal feature differences
responding to tool wear and chatter. In general
the condition of chatter appeared to be more
detectable than the tool wear, and the detection
methodology based on the energy levels was
more effective than using time series modeling.
Success rates ranging form 70% to 90% using
time series parameters, and 80% to 100% using
frequency band energy levels, depending upon
the ‘cutting parameters and tolerance specifi-
cations have been concluded experimentally.
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