InGaAsP/InP이종접합구조의 격자부정합이 Photoluinescence효율에 미치는 영향

Effects of Lattice Mismatch on Photoluminescence Efficiency of InGaAsP/InP Heterostructures

  • 이종원 (삼성종합기술원 신소재응용연구소, LD 프로젝트실)
  • 발행 : 1994.08.01

초록

이논문에서는 metal organic chemical vapor deposition(MOCVD)에 의해서 성장된 InGaAsP/InP이종접합구조의 격자부정합이 Photoluminescence(PL)효율에 미치는 영향을 연구하였다. 격자부정합은 (400)과 {511} x-ray reflection을 통해 측정하였고, 부정합 전위의 유무는 x-ray to-pography와 PL imaging을 통해 확인했다. PL강도 측정결과, 상대적으로 높은 PL강도는 탄성적으로 스트레인을 받은 시료에, 낮은 PL강도는 전위로 인해 비탄성적으로 변형된 시료에서 얻어졌다. 성장온도에서 격자정합된 시료의 PL효율이 실온에서 가장 높은 것을 알 수 있었다. PL강도와 X-ray반치폭과 관계에서, 시료의 광전자 특성이 구조적 특성과 밀접하게 연관됨을 알 수 있었다.

The interfacial coherency of metal organic chemical vapor deposition grown InGaAsP/InP heterostructure wafers was examined and their influences on the optoelectronic properties were investigated in this study. (400) symmetric and (511) asymmetric reflections were employed to measure the lattice coherency. Existence of misfit dislocations was examined by x-ray topography and reverified by photoluminescence (PL) imaging. PI, measurements were performed, and higher PL intensity was obtained for elastically strained samples and lower intensity for plastically deformed samples. The highest PL intensity was obtained for the sample lattice matched at the growth temperature. PL full-width at half maximum (FWHM) was found to depend on the degree of lattice mismatch. A correlatior between x-ray FWHM and PL intensity was empirically established. The results presented demonstrate that the interfacial coherency is of primary significance in affecting the optoelectronic properties through elastic strain and plastic deformation.

키워드

참고문헌

  1. J. Elec. Matls. v.6 C.J. Nuese
  2. J. Appl. Phys. v.68 K. Ozasa;M. Yuri;S. Tanaka;H. Matsunami
  3. Prentice Hall Reference Series Materials aspects of GaAs and InP based structures V. Swaminathan;A.T. Macrander
  4. Appl. Phys. Lett. v.42 A.K. Chin;C.L.Zipfel;B.H. Chin;M.A. DiGiuseppe
  5. J. Appl. Phys. v.54 M. Fukuda;K. Wakita;G. Iwane
  6. Mat. Res. Soc. Symp. Proc. v.14 J. Matsui
  7. Appl. Phys. Lett. v.28 R.E. Nahory;M.A. Pollack;E. D. Beebe;J. C. DeWinter
  8. Appl. Phys. Lett. v.33 K. Oe;Y. Shinoda; K. Sugiyama
  9. J. Elechem. Soc. v.126 J. Matsui;K. Onabe;T. Kamejima;I. Hayashi
  10. J. Appl. Phys. v.65 C. Ferrari;P. Franzosi
  11. J. Appl. Phys. v.57 S.N.G. Chu;A.T. Macrander;K.E. Strege;W.D.J. Johnston
  12. Thin Solid Films v.31 G.A. Rozgonyi;D.C. Miller
  13. Application of x-ray topographic methods to materials science S. Weissmann
  14. Appl. Phys. Lett. v.52 P.L. Gourley;I.J. Fritz;L.R. Dawson
  15. Sov. Phys. Semicond v.19 V.A Strakhov;N.G. Yarmenko;A.A. Telegin
  16. J. Appl. Phys. v.48 M. Ettenberg;G.H. Olsen
  17. Appl. Phys. Lett. v.40 K. Ishid;T. Kamejima;Y. Matsumoto
  18. Appl. Phys. Lett. v.34 R. Bisaro;P. Merenda;T.P. Pearsall
  19. J. Appl. Phys. v.54 H. Asai;K. Oe
  20. J. Appl. Phys v.54 S. Mukai
  21. J. Crytal Growth v.96 Y.K. Su;M.C. Wu;B.S. Chiu
  22. J. Elec. matls v.16 C. Bocchi;C. Ferrari;P. Franzosi
  23. Solid state physics C. Kittel