Sinter forging으로 제조한 Y-BA-Cu-O/Ag 고온 초전도 복합체의 미세조직과 특성

A Study on the Microstructure and Properties of Y-BA-Cu-O/Ag composite High $T_{c}$ Superconductor prepared by Sinter-forging Process

  • 발행 : 1994.02.01

초록

Y-BA-Cu-O계 고온초전도체의 미세조직을 가공과 열처리로써 제어하여 조직의 배향화와 치밀화를 기하여 높은 임계전류밀도($J_c$)를 갖는 초전도체의 개발을 목적으로sinter forging법으로 Y-BA-Cu-O/Ag 고온초전도복합체를 제조하였다. sinter forging을 통하여 고온 초전도체의 미세조직의 texture화를 가져왔으며, 이 경우 (123)결정립의 C축 방위가 단일축의 압축방향으로 배향화 되었다. 한편, texture의 orientation facter는 고온일수록, 압력이 클수록 크고, 조직의 배향화도 뚜렷하였으며 그에 따라 $J_c$역시 증가하였다. 이러한 결과로 미루어 결정의 배향도는 $J_c$를 좌우하는 중요한 변수라고 사려되었다. 또한 sinter forging 시킨Y-MA-Cu-O/Ag 복합체의 on set온도는 sinter forging온도에 크게 의존치 않았으나, 고온일수록 off set 온도($T_c\;^{zero}$)가 다소 떨어졌다. 한편, 첨가된 Ag는 주고(123)결정입계에 존재하였으며, 이들이 (123)결정립간의 결합을 촉진시켜 임계전류밀도를 크게 향상시켰으며, Y-BA-Cu-O/Ag 복합체의 $J_c$는 2,000 A/$\textrm{cm}^2$ 이상이었다.

Y-Ra-Cu-0 oxide superconductors were fabricated by the sinter-forging method to make the critical current density improve through controlling of microstructure and crystal texture. The grain alignment of oxide superconductor was formed by the sinter-forging process and it's c-axis orientation was parallel to the press direction.The orientation factor of texture increased with sinking temperature and pressure, and also grain alignment was improved by the addition of Ag. As for the sinterforged Y-Ba-Cu-O/Ag sample, the $T_c$(on-set) was not almost varied with the sinter-forging temperature, but $T_c\;^{zero}$ decreased more or less at high sinter-forging temperatures. In addition, it was observed that added-Ag was mainly distributed along the grain boundar~es in the (123) matrix, resulting in the densification of microstructure. From these results, i t was thought that the improvement of $J_c$ over 2000A/$\textrm{cm}^2$ was attributed to the texture, densification of microstructure, and (123) grain growth due to the Ag addition.

키워드

참고문헌

  1. Z. Phys. v.B 64 J.G.Bednorz;K.A.Muller
  2. Phys. Rev. Lett. v.58 M.K.Wu;J.R.Ashburn;C.W.Chu(et al.)
  3. Jpn. J. Appl. Phys. v.27 no.2 H.Maeda;Y.Tanaka;M.Fukutomi;T.Asano
  4. Jpn. J. Appl. Phys. v.29 no.7 T.Asano;Y.Tanaka;,M.Fukutomi;H.Maeda
  5. Appl. Phys. Lett. v.52 no.20 Z.Z.Sheng;W.Kiehl;J.Bennett(et al.)
  6. Phys. Rev. Lett. v.60 Z.Z.Sheng;A.M.Hermann;R.J.Angel
  7. Appl. Phys. Lett. v.52 S.Jin;T.J.Tiefel;R.C.Sherwood;M.E.Davis;R. B. Van Dover;G.W.Kammlott;R.A.Fastanacht;H.D.Keith
  8. Proceedings of 1st International Symposium of Superconductivity
  9. Phys. Rev. B v.41 W.C.Lee;D.C.Johnston
  10. J. Appl. Phys. v.62 no.12 J.W.Ekin;A.I.Braginski;M.Hong
  11. J. of the Korean Inst. of Metals v.28 no.4 H.J.Chang;K.M.Kang;J.T.Song
  12. J. Korean Ceramic Soc. v.26 no.2 M.N.Shin;S.H.Park;J.T.Song
  13. Journal of Kora Institute of Metals v.28 no.9 J.T.Song;H.J.Jang
  14. J.J.A.P. v.29 no.11 D.Lee;K.Salama
  15. Adv. Cer. Mat. v.2 no.3B J.W.Ekin
  16. Mod, Phys. Lett. v.B C.Y.Huang;H.H.Tai;M.K.Wu
  17. J. Mat. Res. v.7 no.1 L.Yeon;K.W.White
  18. Appl. Phys. Lett. v.51 S.Jin;R.C.Sherwood(et al.)