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An Analysis and Design of Three-Line Three Port
Bandpass / Bandstop Filter.

(Sang Gun Jang* + Youn Kang Chin™)
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Abstract

Analysis and design procedure for three-line three port bandpass /bandstop fliter consisting of three line

microstrip structures is reported. The measured results for experimental three port structure is shown to be

in good agreement with theoretical poedictions.

L. INTRODUCTION

Mutiple coupled line structures, including the
three-line structures, have been studied for various
applications as directional couplers and other circuit
elements{1,2,3]. The interdigitate directional coupler
has been the most effective means for achieving
tight coupling in microstrip circuits, The main
advantages are its small size and the relatively large
gaps between conductors as compared to a conven-
tional two-line coupler case.

Directional bandpass /bandstop fillters have been

realized in strip line and dielectric waveguide
configurations by utilizing these lines coupled via
single and multiple open ended and ring resonators.
Among the many applications proposed for such
filters include the basic multiplexer multiport which
can be realized by cascading sections of such direc-
tional filters, Specific cases of a three-line microstrip
filter considered in this paper is shown in figure 2,
Utilization of more than two lines results in an
increased effective coefficient of coupling and hence
a broader bandwidth is as the case with Lange
couplers and multiple microstrip DC blocks[4],
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II. THEORY

The properties of this three port circuit can be
obtained in terms of the quasi-TEM as the frequency
dependent normal mode parameters of the multiple
coupled line structures[5—7]. For the general case of
an N line structure, this normal mode paramenters in-
clude N propagation constants, the elements of the N
X N voltage and current eigenvector matrices, and
the N X N characteristic impedance matrix, Three
types of characteristic impedance matrices have been
defined for multiconductor structures. These are the
line mode impedances, the decoupled modal imp-
edances, and the impedance matrix which terminates
all the lines are arbitrary excitation, The 2N-port ad-

mittance matrix expressed in terms of the normal

mode paramenters,
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[Fig. 1] Schematic of the coupled line 2N-port.
The transmission line equations for the N line sys-
tem shown in figure 1 are given by:
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where [V] and [I] are the N dimensional column
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vectors representing the voltages and currents on the
lines respectively, and [Z] and [Y] are N x N im-

pedance and admittance matrices as given by
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where Z; and Y, (i=1,2,...,N) are the equivalent self
impedance and admittance per unit length of the ith
line, and Z; and Y; (i#j) are the mutual impedence
and admittance per unit length between the ith line
and the jth line.

The voltages and currents for the case of uni-
formly coupled lines considered here are then the

solutions of the following characteristic equations:

dy _
i#L+uMﬂWLw (3)
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where, for the N line 2N-port case

yllzl={1z1tvl iy

The general solutions for the port voltages on N line

2N-port structures are given by
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where [ 4 indicates a diagonal matrix.
The corresponding currents for N line 2N-port are
determined by substituting the expressions for

voltages(5) into (1). These currents are given by
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where, i=1,2,...N,

In the above equation, the eigenvalues, Bs,
representing the solutions of det{{Z]{Y] + g (UL}=0,
are the propagation constants for the normal modes
of the system, A, (j=1,2,...2N) is an arbitrary ampli-
tude coefficient and ¢, =g, ¢ is the electric length of
lines for the N normal modes.

[My] is the voltage eigenvector matrix (NxN)

corresponding to eigenvalues:

1 1 ee 1
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{Mi] is the current eigenvector matrix (NXN) de-
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where, Y. is the characteristic admittance of line k
for mode j.

Eliminating A,, A,,..., Ax leads to 2N equations for
the 2N-port currents where coefficients represent the
immittance parameters. These admittance param-
eters of the 2N-port are found to be:
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The second matrix can be inverted as follows:
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The normal mode parameters of the above admit-
tance matrix are found in terms of the quasi-static
[R], [L], [G] and [C] matrices per unit length as
shown in [8] or directly from the full wave simu-

lation as shown in [7].

Il. Analysis and Design
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The adimittance matrix (Y] derived by equation
(9) is reduced to a three port matrix of the
bandpass /bandstop filter by adding the rows corre-
sponding to the connected ports and reducing the
resulting matrix by suppressing the nodes corre-

sponding to the open ports as shown in figure 2.

— L T 4
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(Fig. 2] Schematic of three-line three port structure.

For this case, using the boundary conditions given by
1221420 and V1=V3 VVlth 13211+I3=211, the
reduced matrix of the bandpass /bandstop filter is

described by the following immittance matrix:

le+213

3 Zys Z
[Z] = Zs Zss Zy (10a)
Zn+Z
% Zs Iy
or
lY]=[z]" (10b)

where the elements of [Z] are expressed by [5].

The scattering paramenters are calculated by using
the above reduced [Y] matrix. Here the disconti-
nuity effects associated with the open end, steps,
and bends are not includes. These can of course be
included in the final design of the multiport. The
scattering matrix is then calculated from the
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normalized reduced [Y] matrix for the given set of

terminations from [8]:
[SI={U]+ Y]l - vyl (11)

Approximate procedures to reduce the multicond-
uctor section to eqivalent sections with lesser number
of lines or superposition of coupling terms as in ref,
[9] may also be used to help facilitated the design.
The dimensions for the desired bandwidth of band-
pass /bandstop filter were found by trial and error
method as follow: the quasi-TEM mode parameters
for given relative dielectric constant and arbitrarily
chosen physical dimensions of the structure were
first determind by using numerical analysis, These
parameters were substituted into the equivalent ad-
mittance paramenters, The above procedure has been
repeated until one can find the desired bandwidth.
The length of the filter section is quater of the
center frequency wavelength. This would lead to an
approximate design which can be a good starting
point for the computer aided optimazation procedure.
It should be noted that the threeline three port
bandpass /bandstop filter design is somewhat similar
to the coupler design and the impedance renormal-
ization procedure[10] helps enhance the matching of

the three port structure,

IV. RESULT AND CONCLUSION

The structure geometeries for the fabracated
filters are shown in figure 3. Figure 4 shows the fre-
quency response of a three line structure designed
for a 50 ohm system which is founded by CAD
program LIBRA. The experimental results for the
three-line three port structure fabricated with the
dimensions shown in figure 3 are shown in figure 5
and 6,



The design procedure for three-line three port
bandpass /bandstop filter has been presented. The
experimental results for a three-line three port struc-
ture fabricated on 1.588mm Teflon substrate with ¢
= 2.5 validate the original procedwe and demon-
strate the filtering properties of this multiport, The
example given here is based on the computation of
the S parameters of the multiport from the
quasi-TEM parameters to help demonstrate the feasi-
hility of this bandpass /bandstop filters.

The quasi-TEM normal mode parameters can be
computed the moment method[11]. In this structure,

each parameters are given by:

20.71724 —14.743572 —3.808687

[C]=|-14.73572 4119752 —14.73572|(p F /m)
—3.808687 —14.73572 50.71724
S, S2

€r=25 h = 1588 mm
W, =Wy;= 1078 mm W, =04 mm
Sy = Sz = 0.34 mm
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0,4924950 0.2348620 0.1266783
[L] = 10.2348620 0.6550249 0.2348621((x H /m)
1266783 0.2348621 0.4924950,

7100000 103728 1.000007
(M) =| 1.00000 —0.00001 —1.00000
| 100000 —4.76024  1.00004]
S 100000 0.419%  1.00000]
[M] =| 1.00000 —0.00001 —0.99999
| 100000 —1.92815  1.00002]

Effects of various discontinuities, dispersion, and
losses are readily included in the analysis and account
for the minor differences between the theoretical and
the experimental curves for the three line example

presented in this paper.

50 N

50

(b)

(Fig. 3) Schemetic of (a) Coupled three microstripline, (b) Layout for three-line three port

bandpass / bandstrop filter.
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(Fig. 4) Calculated resuits for the bandpass/ bandstop filter.
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(Fig. 5] Measured data for the bandpass filter.
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