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The Effect of The Initial Phase Angles of
The Large-Scale Coherent Structures in a Spatially
Developing Viscous Shear Layer
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1. Introduction

The integral energy method is applied to solve
the nonlinear development of the large-scale cohe-
rent structures. The integral energy method was
first given by Stuart(1962) for the nonlinear stabi-
lity analysis, This method was further developed
by Ko, Kubota&Lees(1970) in the analysis of the
nonlinear development of a laminar wake. Nikito-
poulos&Liu(1987, 1989) studied the nonlinear two-
and three-mode interactions in a developing mi}(ing

=" layer. In recent Se0(1993) and Seo&Nikitopoulos

(1993) also studied three-dimensional wave mode
interactions in a spatiallyﬂ developing plane mixing

)

layer by using energy ‘method.

The integral energy equations coupled with the
shape assumptions are used to derive the nonlinear
ordinary differential equations that describe the
energy exchange between the mean flow and large-
scale wave modes. The shape assumptions for the
mean flow and wave ﬁlodes are required in order
to determine the integral coefficients in the energy
equations. In this study we assumed that the large-
scale wave modes are decomposed into fundamen-
tal and subharmonic wave modes.

In here, we derived the energy equations of the
mean flow and wave modes, and solved those

_ equations numerically.
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2. Governing Equations
An arbitrary quantity ¢(x, £) is expressed as
9@, H=Q)+7(x, v) )

where Q(x) is the time-averaged mean quantity
and g(x, £) represents the large-scale coherent st-
ructure.

For the purposes of this study the large-scale
velocity components #; and pressure p are assumed
to be Fourier analyzable, and are decomposed into
two wave modes which are periodic in time t. Thus
the decomposition of the large-scale structure yie-
Ids *
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=t in (3
P=Putpn @
with
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Dupn |=| Ul | g™ Btk (5)
pmn Pon :|

where )y, ¢, and pi,, and are complex amplitu-
des, and B, is the frequency of wave mode mn.
The large-scale wave mode with mn=10 will be
called subharmonics and one with mn=20 will be
called fundamental, The fundamental frequency is
2 times of the subharmonic.

Following work by Nikitopoulos&Liu(1987) and
Se0(1993), the Fourier amplitudes and are assu-
med to be separable into an unknown finite comp-
lex amplitude and corresponding vertical shape fu-

nctions -
U, 1) Yo (1)) _
umn(x: T]) =A(x) amn(n)} ' (6)
ﬁnn(xn 'ﬂ) ﬁmn(n) .

Following earlier work by Stuart(1962), Ko, Ku-
bota&Lees(1970) and Nikitopoulos&Liu(1987, 19
89), the shape assumption in the form of traveling
wave for the Jarge-scale structures is given by as-
sumning the separable form of the product of an
unknown finite amplitude A(%) with a vertical
shape function given by the local linear stability
theory.

For our nonlinear analysis the amplitude A,.,

can be witten as
A ®= | A @ | )

in terms of its magnitude | Am() | and phase
angle Wy (x).

Each large-scale wave mode thus has the

form -
ﬂmn ?}mn(n)
‘v —AG) gm(n)]g" J"D “armde +iym(®)
pmﬂ pmn(n
—iﬁ,ﬂ'ﬁr CC. . @®

where 0., is complex wave number, n=3»/5(x)
is the rescaled vertical variable and 8(x) is defined
as the local shear layer maximum slope thickness.
c.c. represents the complex comjugate. The shape
fUNCtions 2, By and P, and are assumed to be
identical to the eigenfunctions of the local linear
stability solutions for the wave mode mn(Seo
1993 5 Seo&Nikitopoulos 1993).

For the mean flow, we will assume to have the
shape of a hyperbolic tangent profile. In the develo-
ped mixing region, the mean velocity profile is

(Ho&Huang 1982)

U=1~R tanh(n) (9

where R=(U-.,—U)AU-.+U.)
We begin with the continuity and Navier-Stokes

equations for an incompressible homogeneous fluid.
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Using the energy content of the wave mode mn
defined as E..(x) = | Aw(x) | %¥(x), the following
set of equations are obtained :

1. Mean Flow .
I,,Mg:g 731:2; ‘DM_‘é‘ (E wlvwotE nlywx)

&l1))

where Re5=§vgis the Reynolds number of the
shear layer mean flow.
2. Wave mode energies -
+ 10 mode 3

Iapwm% = _%‘E mIMmoﬁR"%es Evlwn

—31—%E10\/—‘Emn%m (1

gl_%_Elo\/Em Toeo (12)

3. Wave phase angles :
* 10 mode ;

v o P
Pan() 0 _‘ﬁ 10 Wm + PﬁWlO

1 dEy
B dx
+#\/EZDP{820 (13)

+ 20 made

Cad P 1 dE
Pawzof :Bzo"'““gﬂ +E_zo "EZOP[;WZO

1 Ew_ po (14)

3T VEa

The integral coefficients in the above equations
are given below. The mean flow energy advection
integral coefficient L is

Lue= _é_ U_Z(l*R tanhn)((1—R tankn)?

~QU+RMdn+ [[(1—R tanim)

(cl—Rmhmz%<1~R>2>dn]=ﬁ<3—zznz>
(15)

and the mean viscous dissipation integral coeffi-

clent @y, is
= E_p=i&
D=, coshzrl 3 (16)

where R is the velocity ratio.

The integral coefficient Lywa» consists of a wave
mode energy advection and pressure transport co-
mponent -

Iamen:Iann + Imen ( 17)

where the wave mode energy advectmn integral
coefficient Iann is

Lons ™= [ Ul i+ 10a Dl (18)

and the wave mode pressure work integral coeffi-
clent pmn 18

I HWinn =-[_u; 2R€l (Z;:nnﬁ :m) dT] ' ( 19)

where Rel represents the real part of the eigen-
function and ( )* complex conjugate.



The wave mode production integral coefficient
IMWmn iS
(20)

. IMWmn :.r_i ZRGI(EL»"BW.) a_UdTl

an
and the wave mode viscous dissipation integral

coefficient Lgmn is
—_ = 61’2»;" 5mn
L™= 2 e 2+ 2 || 2 Dd 21
= 2427 (1B B2y (o)

In the phase angle equations, P is equal to
the wave mode advection integral Lw... The integ-
ral influencing the mode phase shift from its inte-

raction with the mean flow is

Pri=[ ", G 3 (22)

where Im represents the imaginary part of the
eigenfunctions and the one influencing the phase
induced by the pressure field is

-Ppan ZI_Z Im (ﬁmnﬁ ;m)d'n (23)

The remaining terms of each wave energy and
phase angle equations represent mode-mode ene-
rgy exchange and. the phase shift induced by inte-
raction between wave modes respectively.

I%ZZReI(Z{}"AHe_i((_)PW”+ (—)iWij+(_)kaE:)
(24)

Py= Iln(Zﬁ”Aue_i((_)p“'“+ (_)i\Vx']'+(_)k\VkE:)
(25)

where

@ . ~y -~ -~ A .
B Am=I_m ~ia(uh un—v10 o i) dn
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If we rewrite the mode-mode interaction integral

Z{,"’ Aw,

St A= S0 ALl

then the total phase angle difference involved in
the relevant interaction term will be

Jan (26)

(27)

Wh= (=) Nyt (=) gyt (= )4yt 04(28)

.......... an/2
- : Decoupled —

Cose l‘)

(r) 6/8,

Ry =100 B

P =122, 7m0

a 00 200 -'I.W.

x/8o
Effect of the initial phase angle s
on the development of the shear layer
for two wave mode when E~$§ and
E_20|

Figure 1



The Effect of The Initial Phase Angles of The Large-Scle Coherent Structures in'a Spatially Developing Viscous Shear Laver

Q1

0.0

—0.1

=12

-0.3

(a) E

L v 5
tolwwio’ (b) Epylyyee/ ¢

3.0 T T

C3An/2
........ . Decolupled

v T

T 0.1

{e) EWW10 . oo

-1

—~1),2

-3

—0.4

Lo -5

0.6 | |

100 200 00 0 100 200 " 300
x/4, X/0

Terms have been multiplied by a factor 10°

Figure 2 Effect of the initial phase angle wzo on the development of the energy in-

tegral terms for two wave mode when E~9% and E~%.
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3. Results and Discussion

We will present the results of the effects of the
initial phase of mode 20, ya;, for the purely two-
dimensional wave mode interactions. In doing this
we will set yiw=0, using the phase of mode 10
as a reference. Figure 1 shows the reeesults of
the nonlinear analysis for the effect of the initial
total phase angle difference on the development
of the shear layer when the large-scale coherent
structures are assumed to be composed of two
wave modes(10 and 20), and the initial energy
densities of the subharmonic 10 and fundamental
20 wave modes are 10™* and 107" respectively.

In the initial region, where Ey is much smaller
than Ex, the shear layer thickness grows mainly
because of energy transfer from the mean flow
to the fundamental as shown in Figure 2. The gro-
wth rate of the shear layer due to energy drain
of the mean flow, is depicted in Figure 2(c) and
it can be seen that growth rate reaches a first
pick as the energy drain from the fundamental
is maximized. Figure 2(c) is also indicative of the
entrainment ignoring the effect of viscosity in the
growth rate of the shear layer. The growth of the
fundamental in the initial region is thus responsible
for increased entrainment and mixing. The funda-
mental energy grows first, reaches the maximum
point where it becomes neutral, and starts to decay
because of loss of energy to the mean flow(see
Figures 1(b) and 2(b). The subharmonic also fol-
lows approximately the same course of the funda-
mental but peaks further downstream. As the fun-
damental saturates, the growth of the shear layer
declines(Figure 2(c)) steadily until the subharmo-
nic becomes strong enough to counteract the trend
by extracting enough energy from the mean flow.
As the subharmonic grows stronger, it extracts an
increasing amount of energy from the mean flow
leading to the second peak in Figure 2(c). Thus

. the presence of the subharmonic is responsible for

a significant increase in the growth of the shear
layer and the subsequent increase in entrainment.
The peak of the fundamental wave mode energy
is related with the first plateau of the shear layer
thickness, and the peak of the subharmonic energy
is related with the second plateau in the shear
layer thickness further downstream(see Figure 1
(o).

In the initial region of the shear layer, as shown
in Figure 1 and 2, the different initial phase angles
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and the interaction between modes do not affect
the development of the shear layer thickness &
and the fundamental energy density E, because
the fundamental energy production Exlmwxn/6 is
much greater than both the subharmonic energy
production Eolyw10/8, and the modal interaction
term, because of the small energy content of the
subharmonic. In the same region the development
of the subharmonic energy density £y is affected
by the value of the initial total phase angle because
the nonlinear mode-mode interaction can be a siza-
ble fraction of the subharmonic energy production.
The total phase angle difference ¥i» controls the
direction of the energy transfer of the nonlinear
wave mode interaction. The initial values 0 and
.w of total phase angle difference maximize the
initial energy exchange between wave modes while
they do not affect the initial varjation of the phases.
In similar manner, the initial values n/2 and 3r/2
maximize the nonlinear phase shift and eliminate
the initial energy exchange between wave modes.
As the subharmonic grows, the effects of the diffe-
rent initial phase angle on the mean flow and the
fundamental begin to show(see Figure 1).

In Figures 3 and 4 we show the results for diffe-
rent initial values of the phase angle when E1,= 10
% and Ex:=10"% ie. when the subharmonic is
initially weaker. It is obvious that in the initial re-
gion where the fundamental extracts most of the
energy from the mean flow, because the initial ene-
rgy density of the fundamental is much stronger
than that of the subharmonic, the trends are in
general the same as in the previous case where
the subharmonic was stronger. The fundamental
persists further downstream after if saturates and
is overtaken by the subharmonic at a much later
location than before. This essentially moves vor-
tex-merging and the associated step-like growth

of the shear layer downstream, and results in an
overall much slower growth of the shear layer and
locally reduced entramment. Between the peaks
attributed to the fundamental(first) and the subha-
rmonic(second) in Figure 4 it is seen that energy
is returned to the mean flow by the fundamental
and in this region a slow growth of the shear layer
Figure 3(c) is sustained by viscous diffusion.
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